Acromegaly: Management of the Patient Who Has Failed Surgery

Minnesota/Midwest Chapter of the American Association of Clinical Endocrinologists

8th Annual Meeting
October 14, 2017

Mark E. Molitch, M.D.
Northwestern University Feinberg School of Medicine
Chicago, Illinois USA
Mark E. Molitch, M.D.

Disclosures

• Financial
 - Products used in the treatment of patients with acromegaly
 • Research support from Ipsen, Novartis, Chiasma
 • Consulting with Ipsen, Pfizer, Novartis, Novo Nordisk, Genentech, Chiasma

• Non-FDA approved uses of drugs
 - Cabergoline for acromegaly
 - Pasireotide for acromegaly
Acromegaly comorbidities

- Hypertension, cardiomyopathy, valvular disease
- Cerebrovascular events and headache
- Hypogonadism
- Arthritis
- Respiratory complications
 - Sleep apnea
- Glucose intolerance/DM
- Colon polyps
Acromegaly Impacts Survival

Life expectancy ↓ 10 years

General population

All acromegaly

Acromegaly + diabetes

Acromegaly + cardiac disease

Rajasoorya et al Clin Endocrinol 1994;41:95
Acromegaly (n=442)
Survival Curves According to Last GH Level

Mercado et al, JCEM 2014;99:4438
Acromegaly (n=442)
Survival Curves According to Last IGF-1 Level

Mercado et al, JCEM 2014;99:4438
Improvement in Morbidity in Patients With Acromegaly According to Their Last GH Level

The ultimate goal of surgery is complete restoration of normal GH and IGF-I levels and GH secretory dynamics with GH suppressed to < 0.4 ng/ml or lower by glucose.

Random GH levels < 1 ng/ml along with age-adjusted normal IGF-I levels are associated with normalization of mortality and considerable reduction of morbidity.

When glucose suppressed GH levels are > 1.0 ng/ml or random GH levels are > 2.5 ng/ml or IGF-I levels are greater than age-adjusted normal values, additional therapy is indicated to reduce morbidity and mortality with the goal of obtaining normal IGF-I levels.
Surgical Cure Rates for Acromegaly

<table>
<thead>
<tr>
<th>Series</th>
<th>No. of Patients</th>
<th>Micros % Cured</th>
<th>Macros % Cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abosch et al</td>
<td>254</td>
<td>75%</td>
<td>71%</td>
</tr>
<tr>
<td>Swearingen et al</td>
<td>149</td>
<td>91%</td>
<td>48%</td>
</tr>
<tr>
<td>Freda et al</td>
<td>99</td>
<td>88%</td>
<td>53%</td>
</tr>
<tr>
<td>Beauregard et al</td>
<td>103</td>
<td>82%</td>
<td>47%</td>
</tr>
<tr>
<td>Shimon et al</td>
<td>98</td>
<td>84%</td>
<td>64%</td>
</tr>
<tr>
<td>Krieger et al</td>
<td>181</td>
<td>80%</td>
<td>31%</td>
</tr>
<tr>
<td>Mercado et al</td>
<td>332</td>
<td>75%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Abosch et al., JCEM 1998;83:3411
Swearingen et al., JCEM 1998;83:3419
Freda et al., J Neurosurg 1998;89:353
Beauregard et al., Clin Endocrinol 2003;58:86
Shimon et al., Neurosurgery 2001;48:1239
Krieger et al., J Neurosurg 2003;98:719
Mercado et al, JCEM 2014;99:4438
Percentage of Transsphenoidal Operations in 3 Experience Groups Resulting in Each Complication: Results of National Survey

<table>
<thead>
<tr>
<th>COMPLICATION</th>
<th><200 ops.</th>
<th>200-500 ops.</th>
<th>>500 ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>1.2%</td>
<td>0.6%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Meningitis</td>
<td>1.9%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>CSF Leak</td>
<td>4.2%</td>
<td>2.8%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Carotid injury</td>
<td>1.4%</td>
<td>0.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Loss of Vision</td>
<td>2.4%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Hypopituitarism</td>
<td>20.6%</td>
<td>14.9%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Diabetes Insipidus</td>
<td>19%</td>
<td>-</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

Ciric et al., Neurosurgery 1997;40:225
The Birmingham Pituitary Surgery Experience

8 surgeons, n=78
1 surgeon, n=66

% post-op GH <2.5 ng/ml

micros: 54 86
macros: 30 52
overall: 33 66

Gittoes et al. QJM 1999:92;741-5
Tumor MRI and Histologic Phenotypes and Outcomes

- **Densely Granulated** tumors (lower T2 intensity)
 - Higher GH and IGF-1 levels
 - Smaller, less invasive tumors
 - Better hormonal and tumor size response to somatostatin analogs

- **Sparsely Granulated** tumors (higher T2 intensity)
 - Lower GH and IGF-1 levels
 - Larger, more invasive tumors
 - Poorer hormonal and tumor size response to somatostatin analogs

Cytokeratin Staining: Densely Granulated
MRI T2 Imaging: Lower T2 Intensity

Cytokeratin Staining: Sparsely Granulated
MRI T2 Imaging: Higher T2 Intensity

Brzana et al., Pituitary 2013;16:490
Heck et al., Endocrine 2016;52:333
Potorac et al., Endocr Relat Cancer 2016;23:871
Therapy: Residual disease after surgery

- Repeat Surgery
- Irradiation
- Medical Therapy
- Observation
Therapy: Residual disease after surgery

- Repeat Surgery
- Irradiation
- Medical Therapy
- Observation
Second Surgery for Acromegaly

9 series reviewed

<table>
<thead>
<tr>
<th>Original # of Patients</th>
<th># of Second Surgeries</th>
<th># in Remission</th>
<th>% in Remission</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>21</td>
<td>6</td>
<td>28.6%</td>
</tr>
<tr>
<td>212</td>
<td>34</td>
<td>7</td>
<td>20.6%</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>3</td>
<td>30%</td>
</tr>
<tr>
<td>315</td>
<td>90</td>
<td>16</td>
<td>18%</td>
</tr>
<tr>
<td>303</td>
<td>26</td>
<td>4</td>
<td>15.4%</td>
</tr>
<tr>
<td>-</td>
<td>29</td>
<td>14</td>
<td>48.2%</td>
</tr>
<tr>
<td>212</td>
<td>16</td>
<td>3</td>
<td>19%</td>
</tr>
<tr>
<td>270</td>
<td>28</td>
<td>16</td>
<td>57.1%</td>
</tr>
<tr>
<td>Total</td>
<td>257</td>
<td>69</td>
<td>26.8%</td>
</tr>
</tbody>
</table>

Abe T, Ludecke DK. Neurosurgery 1998;42;1013-1022
Effects of Gamma Knife and Conventional Radiotherapy in Acromegaly

Landolt et al., J Neurosurg 1998;88:1002
Stereotactic Radiotherapy for Acromegaly

• Summary of 1303 patients treated in various series since 2000
 – Mean/median follow-up of 51.5 mos
 – Biochemical remission – 43.5% (range 17 – 82%)
 – Hypopituitarism – 14.9% (range 0 – 40%)

Sheehan et al., Neurosurg Clin N Am 2012;23:571
Adverse Effects of Conventional Radiotherapy for Pituitary Adenomas

• Hypopituitarism – up to 80%
 - GH > LH/FSH > ACTH-TSH
 - Likely also true for Gamma Knife RT
• Second Brain Tumors – 2 – 3% by 20 yrs
• Stroke – increased 2-fold
• Cognitive dysfunction – rare
• Encephalomalacia – very rare
Medical Therapy Targets of the GH/IGF-I Pathway

- **Somatostatin Analogos (SSAs)**
 - Directly inhibit GH secretion

- **Dopamine Agonists (DAs)**
 - Directly inhibit GH secretion

- **GH Receptor antagonist**
 - Blocks the GH receptor, negating effects of GH in periphery
 - Directly inhibits IGF-I secretion

Increased somatic growth & metabolic dysfunction
Effects of Adjunctive Therapy With Cabergoline Following Surgery and/or Irradiation on IGF-I Levels in Patients With Acromegaly

<table>
<thead>
<tr>
<th>Series</th>
<th>N</th>
<th>% with Normal IGF-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colao (1997)</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Abs (1998)</td>
<td>64</td>
<td>39</td>
</tr>
<tr>
<td>Cozzi (1998)</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Moyes (2008)</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>TOTAL</td>
<td>108</td>
<td>32</td>
</tr>
</tbody>
</table>

Colao et al., *JCEM*. 1997;82:518.
Abs et al., *JCEM*. 1998;83:374.
Human somatostatin

- Inhibits multitude of hormones
- $T_{1/2}$ 3 minutes
- Binds all 5 receptor sub-types

Somatostatin Analogs

- Lanreotide
 - Dphecysphecysphecysphecys
 - Dtrpbnalcys
 - Dtrplys
 - Dtrplys

- Octreotide
 - Dphecysphecysphecysphecys
 - Dtrplys
 - Dtrplys
 - Dtrplys
 - Dtrplys
Comparison of Octreotide LAR to Lanreotide Autogel

Summary of 5 Studies

Murray RD, Melmed S. JCEM 2008;93:2957
Tumor Changes After Octreotide Therapy Expressed as a Percentage of the Pre-treatment Volume in 20 Macroadenomas

Bevan J. et al., J Clin Endocrinol Metab. 2002; 87:4554-4563.
Benefits of Adding Cabergoline to Somatostatin Analogs

IGF-I percent change during SA + CAB compared to SA alone

Patients are ranked by PRL (µg/l) level shown on the x-axis

Cozzi et al Clin Endocrinol 2004;61:209
Extension of Time Between 20 mg Octreotide LAR Doses in Patients With Acromegaly

Final Dose Frequency

No. of Patients

Weeks Between Injections

4 6 8 10 12 off

Turner et al Clin Endocrinol 2004;61:224
Prospective, Randomized Study Comparing Pasireotide to Octreotide in Patients with Acromegaly

Colao A et al, JCEM 2014;99:791–799
Worsening of Glucose Tolerance with Pasireotide in Acromegaly
Prospective Randomized Study Comparing Pasireotide to Octreotide

• Change in HbA1c levels:

<table>
<thead>
<tr>
<th></th>
<th>Pasireotide</th>
<th>Octreotide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic pts</td>
<td>+0.87%</td>
<td>+0.03%</td>
</tr>
<tr>
<td>Prediabetic pts</td>
<td>+0.64%</td>
<td>+0.11%</td>
</tr>
<tr>
<td>Nondiabetic pts</td>
<td>+0.75%</td>
<td>+0.37%</td>
</tr>
</tbody>
</table>

• Antidiabetic medication required:
 - Pasireotide – 44.4%
 - Octreotide - 26.1%

Colao et al., JCEM 2014;99:791
Clomiphene Citrate for Treatment of Acromegaly Not Controlled by Conventional Therapies

Clomiphene Citrate 50 mg per day added to other therapies for 3 months

Duarte et al., J Clin Endocrinol Metab. 2015;100(5):1863
Oral Octretide
Transient Permeability Enhancer (TPE)
Induces increased intestinal paracellular permeation
Oral Octreotide Inhibits GH Secretion in Rats

GH Levels in Individual Rats (N=6)

- **Octreolin Treated**
 - Rat GH (ng/mL)
 - Time (min)
 - Octreolin
 - Saline

- **Naive Rats**
 - Rat GH (ng/mL)
 - Time (min)

Mean AUC of GH

- AUC of GH Curves (pg/mL * min)
 - Octreolin Treated
 - Naive Rats

Chiasma
Oral Octreotide
Pharmacokinetic Results in Normal Subjects
Plasma Octreotide Levels after Single Oral Administration or Single SC Octreotide Injection in Healthy Volunteers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oral Octreotide 20 mg</th>
<th>SC Injection Octreotide 100 mcg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (ng/mL)</td>
<td>3.77</td>
<td>3.97</td>
</tr>
<tr>
<td>Tmax (hrs)</td>
<td>2.67</td>
<td>0.64</td>
</tr>
<tr>
<td>AUC</td>
<td>16.2</td>
<td>12.1</td>
</tr>
<tr>
<td>Half-life (hrs)</td>
<td>2.38</td>
<td>2.25</td>
</tr>
<tr>
<td>Time ≥ 1 ng/ml (hrs)</td>
<td>6.00</td>
<td>3.92</td>
</tr>
</tbody>
</table>

Tuvia et al., JCEM 2012;97;2362
Primary Efficacy Endpoint: Responders (IGF-1 < 1.3 x ULN and GH < 2.5 ng/mL) at End of Core Treatment

<table>
<thead>
<tr>
<th>Dose at End of Core Treatment, mITT (7 months, n=151*)</th>
<th>40 mg (n=61)</th>
<th>60 mg (n=33)</th>
<th>80 mg (n=57)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responders</td>
<td>53 (87%)</td>
<td>22 (67%)</td>
<td>23 (40%)</td>
<td>98 (65%)</td>
</tr>
</tbody>
</table>

*mITT = subjects having at least one set of values after beginning treatment

- 88 of 98 responders entered the extension phase
- 85% of patients entering the extension phase as responders maintained response through 13 months

Melmed et al. *JCEM* 2015;100:1699
Growth hormone receptor antagonist (Pegvisomant) design

Site-1 binding to GH receptor enhanced, preventing hGH from binding to the receptor

Functional dimerization is prevented; signal transduction and IGF-I production do not occur
Mechanism of GH Binding & Signal Transduction

GH binding to dimerized receptor cause rotational conformational change that causes receptor activation with transduction through JAK/STAT pathways

IGF-I at baseline and after 12 months pegvisomant

97% normalisation of IGF-I

van der Lely et al Lancet 2001:358:1754
Tumor Volume Changes in 92 Patients Receiving Daily Pegvisomant for > 6 Months

van der Lely et al Lancet 2001:358;1754
Tumor Enlargement and Liver Tests While Receiving Pegvisomant in ACROSTUDY for mean of 3.8 years

- 710 subjects had \geq 2 MRI’s done over 3.8 years
 - 12/542 (2.2%) – tumor size increased confirmed with central reading
- 8/670 (1.2%) patients had $>3x$ ULN transaminases (ALT or AST)

Freda et al., Endocrine Practice 2015;21:264
Weekly Pegvisomant Added to Somatostatin Analogs in Resistant Patients Normalizes IGF-I

*9 pts required > 100 mg/wk & 4 pts required 160 mg/wk

n=31
Therapy (35–149 wk)

Neggers SJ, et al. JCEM 2007;92:4598
Summary: Medical Therapy of Acromegaly

• **Somatostatin analogs** - remain the mainstay of medical therapy
 - *On the Horizon: oral somatostatin analogs*

• **Cabergoline**
 - Worth a try in mild cases
 - Often helpful added to somatostatin analogs

• **Pegvisomant**
 - Can switch from somatostatin analogs
 - Can add to somatostatin analogs (especially if large tumor residual)
 - Watch out for transaminase abnormalities
Thank you!