Developing Therapeutics for Thyroid Cancer

Alan L. Ho M.D., Ph.D.
Geoffrey Beene Junior Faculty Chair
Head and Neck Medical Oncology Service
Memorial Sloan Kettering Cancer Center
Disclosures

AstraZeneca (Consultant, Research Funding)
Novartis (Advisory Board)
Pfizer (Research Funding)
Bayer (Research Funding)
Genentech/Roche (Consultant, Research Funding)
Lily (Research Funding)
Eisai (Research Funding, Advisory Board)
Koltan (Research Funding)
Kura (Research Funding)
Merck (Advisory Board)
BMS (Advisory Board)
Sun Pharmaceuticals (Advisory Board)

Off-label use of drugs will be discussed.
Thyroid cancer incidence and mortality is rising (SEER-9 cancer registry)

Avg increase in incidence per year (1974-2013): **3.6%**

Avg increase in incidence-based mortality per year (1994-2013): **1.1%**

Lim, H. *JAMA*, 2017
Clinical States of Thyroid Cancer: Radioiodine (RAI)

<table>
<thead>
<tr>
<th>PRIMARY TUMOR</th>
<th>RECURRENT/METASTATIC DISEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroidectomy</td>
<td>RAI-AVID (RAIA)</td>
</tr>
<tr>
<td>Adjuvant RAI ((^{131}\text{I}))</td>
<td>Surgery</td>
</tr>
<tr>
<td>TSH suppression</td>
<td>EBRT</td>
</tr>
<tr>
<td></td>
<td>TSH suppression</td>
</tr>
</tbody>
</table>

RAI-AVID (RAIA)
- RAI
- Surgery
- EBRT
- TSH suppression

RAI-REFRACTORY (RAIR)
- Chemotherapy
- Surgery
- EBRT
- TSH suppression
RAI-Refractory (RAIR) Thyroid Cancer

• Lack of RAI avidity predicts little to no benefit with RAI and a poor prognosis.

• The subset with indolent/slow-growing disease can be closely followed without therapy.

• Drug therapies for RAIR disease are administered continuously with palliative intent.

Durante, C. J Clin Endocrinol Metab, 91:2892-9, 2006
RAI-Refractory Differentiated Thyroid Cancers

Multi-targeted VEGFR TKIs Phase II Studies

<table>
<thead>
<tr>
<th>Agent</th>
<th>#</th>
<th>PR/CR</th>
<th>SD</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td>56</td>
<td>11%</td>
<td>63%</td>
<td>Ohio State</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>25</td>
<td>23%</td>
<td>53%</td>
<td>Univ. of Pennsylvania</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>29</td>
<td>28%</td>
<td>48%</td>
<td>Univ. of Washington</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>35</td>
<td>17%</td>
<td>74%</td>
<td>Univ. of Chicago</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>37</td>
<td>49%</td>
<td>43%</td>
<td>Mayo Clinic</td>
</tr>
<tr>
<td>Axitinib</td>
<td>45</td>
<td>31%</td>
<td>42%</td>
<td>Multi-Site</td>
</tr>
<tr>
<td>Motesanib</td>
<td>93</td>
<td>14%</td>
<td>67%</td>
<td>Amgen</td>
</tr>
<tr>
<td>Lenvatinib</td>
<td>58</td>
<td>59%</td>
<td>36%</td>
<td>Multi-Site</td>
</tr>
<tr>
<td>VEGFtrap</td>
<td>40</td>
<td>0%</td>
<td>83%</td>
<td>MSKCC</td>
</tr>
<tr>
<td>Sorafenib/Everolimus</td>
<td>28</td>
<td>50%</td>
<td>46%</td>
<td>MSKCC</td>
</tr>
</tbody>
</table>
DECISION: Phase III Sorafenib vs. Placebo in RAIR, R/M Differentiated Thyroid Cancer

1:1 randomized, double blind Phase III trial in RAIR, progressive LA/metastatic thyroid cancer

Median Progression-Free Survival (PFS)

<table>
<thead>
<tr>
<th></th>
<th>Sorafenib</th>
<th>Placebo</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Evaluable Patients</td>
<td>196</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td>24 (12.2)</td>
<td>1 (0.05)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Complete Response</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Partial Response</td>
<td>24 (12.2)</td>
<td>1 (0.05)</td>
<td></td>
</tr>
<tr>
<td>Stable Disease ≥ 6 months</td>
<td>82 (41.8)</td>
<td>67 (33.2)</td>
<td></td>
</tr>
<tr>
<td>DCR (CR+PR+SD)</td>
<td>106 (54.1)</td>
<td>68 (33.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Dose interruption due to AEs, %</td>
<td>66.2</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>Dose reduction due to AEs, %</td>
<td>64.3</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Permanent discontinuation due to AEs, %</td>
<td>18.8</td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>

SELECT: Study of (E7080) LEnvatinib in Differentiated Cancer of the Thyroid

Targets VEGFR 1-3, RET, PDGFR, KIT, FGFR1-4

2:1 randomized, double blind Phase III trial in RAIR thyroid cancer

Median Progression-Free Survival (PFS)

<table>
<thead>
<tr>
<th></th>
<th>Placebo: 3.6 months</th>
<th>Lenvatinib: 18.3 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable Disease ≥ 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCR (CR+PR+SD)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Placebo: 3.6 months
Lenvatinib: 18.3 months

<table>
<thead>
<tr>
<th></th>
<th>Lenvatinib n (%)</th>
<th>Placebo n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Evaluable Patients</td>
<td>261</td>
<td>131</td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Response</td>
<td>4 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>Partial Response</td>
<td>165 (63.2)</td>
<td>2 (1.5)</td>
</tr>
<tr>
<td>Stable Disease ≥ 6 months</td>
<td>60 (23.0)</td>
<td>71 (54.2)</td>
</tr>
<tr>
<td>DCR (CR+PR+SD)</td>
<td>229 (87.7)</td>
<td>73 (55.7)</td>
</tr>
<tr>
<td>Dose interruption, %</td>
<td>82.4</td>
<td>18.3</td>
</tr>
<tr>
<td>Dose reduction, %</td>
<td>67.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Permanent discontinuation, %</td>
<td>14.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

TKI-Refractory DTC: Cabozantinib Phase II (ITOG)

Targets RET, c-MET, VEGFR (cabozantinib dose: 60 mg daily)
RAIR thyroid cancer (papillary, follicular, Hurthle, poorly differentiated) with RECIST progression on prior VEGFR-targeted therapy (up to two previous lines)

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Evaluable Patients</td>
<td>25</td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td></td>
</tr>
<tr>
<td>Complete Response</td>
<td>0</td>
</tr>
<tr>
<td>Partial Response</td>
<td>10 (40%)*</td>
</tr>
<tr>
<td>Stable Disease > 6 months</td>
<td>13 (52%)</td>
</tr>
<tr>
<td>Inevaluable</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>Median PFS</td>
<td>12.7 mos (95% CI 10.9 to 34.7 mos)</td>
</tr>
<tr>
<td>Median OS</td>
<td>34.7 mos (95% CI 18.3 to NR)</td>
</tr>
<tr>
<td>Dose escalation to 80 mg/day, %</td>
<td>4 (16%)</td>
</tr>
<tr>
<td>Dose reduction to 40 mg/day, %</td>
<td>6 (24%)</td>
</tr>
<tr>
<td>Dose reduction to 20 mg/day, %</td>
<td>8 (32%)</td>
</tr>
</tbody>
</table>

Cabanillas ME, et. al., JCO, 2017
TKIs in RAIR Thyroid: When to Treat?

- Systemic therapy is palliative not curative.
- Spectrum of clinical aggressiveness exists for RAIR thyroid cancers (indolent → aggressive).
- TKI impact upon overall survival has not been demonstrated.
- Therapy requires continuous management of drug toxicities.
- Common AEs: Hand-foot syndrome, hypertension, fatigue, diarrhea, asthenia, anorexia, proteinuria, alopecia.
- Mortality: (lenvatinib) 6 drug-related deaths; (sorafenib) 1 drug-related death

BASIC PARADIGM

Treat when risk of *progressive disease* and/or *tumor-related symptoms* outweigh risks of systemic therapy.

“Tumor Volume Doubling Time of Pulmonary Metastases Predicts Overall Survival and Can Guide the Initiation of Multikinase Inhibitor Therapy in Patients with Metastatic Follicular Cell-Derived Thyroid Carcinoma”
(Sabra MM et. al., Cancer, 123:2955-2964, 2017)
TKI plus mTORC1 Inhibitor: Sorafenib plus Everolimus

Study rationale:
- PI3K/Akt/mTOR pathway alterations in thyroid cancer
- PI3K/Akt/mTOR pathway mediates resistance to TKIs?

<table>
<thead>
<tr>
<th>Tumour Type</th>
<th>PR</th>
<th>*PR</th>
<th>SD</th>
<th>POD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papillary</td>
<td>5 (56%)</td>
<td>0</td>
<td>3 (33%)</td>
<td>1 (11%)</td>
</tr>
<tr>
<td>Follicular</td>
<td>1 (50%)</td>
<td>0</td>
<td>1 (50%)</td>
<td>0</td>
</tr>
<tr>
<td>Hurthle Cell</td>
<td>6 (67%)</td>
<td>1 (11%)</td>
<td>2 (22%)</td>
<td>0</td>
</tr>
<tr>
<td>Poorly Differentiated</td>
<td>4 (50%)</td>
<td>0</td>
<td>4 (50%)</td>
<td>0</td>
</tr>
<tr>
<td>Medullary¹</td>
<td>4 (40%)</td>
<td>0</td>
<td>4 (40%)</td>
<td>2 (20%)</td>
</tr>
<tr>
<td>Total</td>
<td>20 (52%)</td>
<td>1 (3%)</td>
<td>14 (37%)</td>
<td>3 (8%)</td>
</tr>
</tbody>
</table>

¹ Six of 10 patients with medullary thyroid cancer had been on ≥ 1 prior regimens

Eric Sherman
Hurthle Cell Carcinoma: Alliance Cooperative Group Trial

Hurthle Cell
1:1 Randomization
No Prior Sorafenib or mTOR inhibitor

Sorafenib

Cross over to Everolimus at POD (exploratory)

Primary Endpoint: PFS

Secondary Endpoints: Response Rate, Overall Survival, Adverse Events

Eric Sherman
MAPK Pathway Alterations in Differentiated Thyroid Cancers

Papillary Carcinoma

5-15% RET

10-15% RAS

45% BRAF

Follicular Carcinoma

5-15% TRK

10-15% 40-50% RAS

45% BRAF

1/2 MEK

1/2 Erk

PAX8/PPARgamma
BRAF Inhibitor Combinations

<table>
<thead>
<tr>
<th>RAIR-DTC</th>
<th>Vemurafenib No Prior RXN</th>
<th>Vemurafenib Prior RXN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR + CR</td>
<td>10/26 (38%)</td>
<td>6/22 (27%)</td>
</tr>
</tbody>
</table>

Shah, MH 2017 ASCO Annual Meeting
Sherman, ES 2017 ASCO Annual Meeting
BRAF Targeting in ATC

<table>
<thead>
<tr>
<th>RAIR-DTC</th>
<th>Dabrafenib</th>
<th>Dabrafenib + Trametinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR + CR</td>
<td>10/26 (38%)**</td>
<td>9/27 (33%)**</td>
</tr>
</tbody>
</table>

*Hyman, DM, NEJM, 2015
**Shah, MH, 2017 ASCO Annual Meeting
***Subbiah, V., 2017 ASCO Annual Meeting
Sherman, ES, 2017 ASCO Annual Meeting
Model of HER3 Mediated Intrinsic, Adaptive Resistance to BRAF Inhibition

Phase I of Dabrafenib plus Lapatinib in $BRAF^{V600E}$ Thyroid Cancer

BRAF MUT
RAIR thyroid cancer

Biopsy #1

Dabrafenib 150 mg bid
x 1 week

Biopsy #2

Lapatinib added as per dose level

Biopsy #3

Treat until POD

Lapatinib Dose Levels
- Level 1 (L 750 mg) – 1/6 DLTs (3 serial bxs)
- Level 2 (L 1250 mg) – 0/3 DLTs (1 serial bx)
- Level 3 (L 1500 mg) – 0/6 DLTS (3 serial bxs)

Eric Sherman, MSKCC and NCI/CTEP
Dabrafenib/Lapatinib: Efficacy Outcomes

<table>
<thead>
<tr>
<th>Cohort</th>
<th>#</th>
<th>All Patients</th>
<th>#</th>
<th>DTC only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Response Rate</td>
<td>Median PFS</td>
<td>Response Rate</td>
</tr>
<tr>
<td>1 – Lapatinib 750mg</td>
<td>6*</td>
<td>50% (3)</td>
<td>10.1m</td>
<td>5</td>
</tr>
<tr>
<td>2 – Lapatinib 1250mg</td>
<td>3*</td>
<td>33% (1)</td>
<td>15.1m</td>
<td>2</td>
</tr>
<tr>
<td>3 – Lapatinib 1500mg</td>
<td>6</td>
<td>83% (5)</td>
<td>Undefined</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>60%</td>
<td>15.1m</td>
<td>13</td>
</tr>
</tbody>
</table>

* 2 ATC patients treated
MAPK Pathway Alterations in Differentiated Thyroid Cancers

Papillary Carcinoma
- RET: 5-15%
- TRK
- RAS: 10-15%
- BRAF: 45%
- MEK 1/2
- Erk 1/2

Follicular Carcinoma
- RET
- TRK
- RAS: 40-50%
- BRAF
- MEK 1/2
- Erk 1/2
- PAX8/PPARgamma
Targeting RAS with Farnesyltransferase Inhibitors (FTIs)

FTase + FPP → FTI

H-Ras

K-, N-

Ras

CAAX

GGTase-I

RAF, RaLGD, PI3K....
Tipifarnib (R11577; Zarnestra) for HRAS Mutant Solid Tumors

- Imidazole-containing heterocyclic nonpeptidomimetic
- *In vitro* FTase IC50s:
 - 0.86 nM (lamin B)
 - 7.9 nM (K-rasB)

Tumors with mutant HRAS

COHORT 1
Thyroid Ca

COHORT 2
Solid Tumors

Primary Objective
Objective Response Rate

Secondary Objectives:
PFS and DOR
Safety/tolerability
Thyroid Cancer Clinical Trial Portfolio (2017)

DTC
- pII Lenvatinib plus Pembrolizumab (ITOG)
- Pilot of Durvalumab plus RAI

BRAF MUT
- pI Dabrafenib/Lapatanib (CTEP)
- Next generation BRAFi (Plexxicon)

Anaplastic
- pII Pazopanib/Taxol plus RT (NRG)
 - Trametinib plus taxol
 - SBRT + anti-CTLA4/PD-L1 inh

Hurthle Cell
- pII Sorafenib vs Sorafenib/Everolimus (Alliance)

Medullary
- Next Generation RET inhibitors (LOXO, Blueprint)

R/M Thyroid Cancer

HRAS MUT
- Tipifarnib (Kura)

Eric Sherman
Alan Ho
Thyroid Hormone Biosynthesis

Follicular Cell

Basolateral surface

Apical surface

NIS

2 Na⁺

I⁻

2 Na⁺

TSH

TSHR

T4

T3

TPO

H₂O₂

I

TG

Lysosomal compartment

Follicular Cell

Thyroid Follciles

Colloid

Thyroid Follicles

Follicular Cell

Colloid
Basic Principles of RAI Therapy

• Tumor RAI avidity is heterogeneous:
 – Clinicopathologic features: age, histology, tumor size, site of metastasis, FDG avidity
 – Genetic and biologic features: tumor genotype, expression of thyroid-specific gene

• RAI efficacy ~ Lesional 131I activity delivered

• RAI is dosed to toxicity, not lesionsal activity

• 1st line 131I therapy for RAI-avid disease: 19% RR

Mitogen-Activated Protein Kinase (MAPK) pathway activation suppresses expression of NIS in thyroid cancer

Expression of Thyroid Specific Genes

NIS: Na/I⁻ Symporter

Pharmacologic inhibition of oncogenic BRAF signaling increases RAI incorporation in an inducible *BRAF*^{V600E} mouse model.

Hypothesis

Inhibiting MAPK pathway activity in RAIR thyroid cancers will enhance RAI incorporation and efficacy.
Clinical Research Toolbox circa 2009 to Address RAI Resistance

selumetinib (AZD6244 Hyd-Sulfate, ARRY-142886)
- Highly selective, allosteric inhibitor of MEK 1/2
- Inhibits MEK1 \textit{in vitro} with an IC$_{50}$ of 14.1 +/- 0.79 nM

\textbf{124}I –\textbf{Positron Emission Tomography (PET)/CT}

Advantages of \textbf{124}I –PET
Quantitative, allows lesional dosimetry
Structural correlates for iodine incorporation

Primary Objective: To determine whether RAI incorporation increases in RAI-refractory thyroid cancer metastases after 4 weeks of treatment with a MAPK pathway inhibitor.

\textit{Ho, A.L. et. al., NEJM, 368:623-632, 2013}
Protocol Schema

Definitions of RAIR Disease

1. Index lesion that did not take up RAI on a diagnostic RAI scan (up to 2 years prior to enrolment)

2. RAI-avid index lesion that did not respond to therapeutic RAI treatment 6 months or more prior to entry in the study.

3. 18F-fluoro-deoxy glucose (FDG) avid PET lesions

Ho, A.L. et. al., NEJM, 368:623-632, 2013
¹²⁴I PET: Selumetinib induces iodine incorporation in a BRAF MUT patient

Baseline

Post-selumetinib

Selumetinib increases iodine incorporation in an NRAS MUT patient with 124I negative and positive tumors at baseline.

Ho, A.L. et. al., NEJM, 368:623-632, 2013
124I PET: Selumetinib increases iodine incorporation in bone metastases (NRAS MUT patient)

Ho, A.L. et. al., NEJM, 368:623-632, 2013
Impact of selumetinib upon 124I incorporation

Patients with new/increased 124I incorporation after selumetinib: 12/20

Patients who went on to receive therapeutic RAI: 8/12

Ho, A.L. et. al., NEJM, 368:623-632, 2013
Responses for RAI-Treated Patients

Ho, A.L. et. al., NEJM, 368:623-632, 2013
Pilot Study Summary

• The MEK inhibitor selumetinib can significantly enhance RAI incorporation/efficacy in a subset of RAIR thyroid tumors.
• RAS mutant patients may be particularly susceptible to this strategy.
• The impact of MEK inhibition upon RAI avidity in the BRAF MUT and BRAF/RAS WT cohorts was heterogeneous.
Role for RAI in Different Clinical States of Thyroid Cancer

<table>
<thead>
<tr>
<th>PRIMARY TUMOR</th>
<th>RECURRENT/METASTATIC DISEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST-THYROIDECTOMY</td>
<td>RAIA</td>
</tr>
<tr>
<td>RAI remnant ablation/adjuvant therapy</td>
<td>RAI (Curative or Palliative Intent)</td>
</tr>
</tbody>
</table>
Risk Stratification for Advanced Thyroid Cancers

- Primary tumor > 4 cm
- Primary tumor with gross extrathyroidal extension (T4 disease)
- Metastatic disease in central neck, lateral neck or mediastinal lymph nodes that:
 1) Measure ≥ 1 cm
 2) Involve ≥ 5 lymph nodes

70% of patients with any of these tumor characteristics will fail to achieve complete remission with initial therapy

R.M Tuttle
Selumetinib Registration Study: Impact upon Complete Remission When Administered with Post-Operative RAI

Primary Objectives: To compare the complete remission rate at 18 month between patients treated with selumetinib versus placebo in combination with RAI.

Secondary Objectives: 1) Complete remission in *BRAF* or *NRAS* mutant subgroup, 2) Clinical remission rate, 3) Clinical remission rate in *BRAF* and *NRAS* mutant subgroup, 4) Safety/Tolerability, 5) PKs

ASTRA
Adjuvant
Selumetinib
For differentiated Thyroid cancer,
Remission
After radioiodine

Higher risk thyroid cancer patients s/p thyroidectomy N=228

2:1

Selumetinib x 5 weeks + 100 mCi RAI

Placebo x 5 weeks + 100 mCi RAI

AstraZeneca
International Thyroid Oncology Group (ITOG): Randomized Phase II RAI plus Selumetinib vs. Placebo in RAIA Patients

Patients with r/m thyroid cancer:
- Avid lesion on RAI scan (dx, post-therapy, post-ablation) ≤ 24 mos prior to registration.
- Radiographically evident disease
- No therapeutic RAI ≤ 6 mos prior to registration.
- Cumulative therapeutic 131-I received ≤ 600 mCi.
- No previous exposure to MEK/RAS/RAF inhibitors (previous sorafenib is allowed).
- Systemic therapy completed ≤ 28 days prior to registration.

Primary endpoint: Response rate at 6 months

Secondary endpoints: Best overall response, progression-free survival, thyroglobulin response, safety/tolerability.

Exploratory endpoint: Correlate genomic/transcriptomic analysis of RAI-avid tumors to clinical outcomes.

ITOG/ACCRU/AstraZeneca
MEK Inhibition in RAIR Thyroid Cancer: *RAS MUT*

<table>
<thead>
<tr>
<th>Tumor Genotype</th>
<th>Patients with increased lesional iodine incorporation after selumetinib (fraction of total)</th>
<th>Patients who received RAI (fraction of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF (9 patients)</td>
<td>4 (4/9)</td>
<td>1 (1/9)</td>
</tr>
<tr>
<td>NRAS (5 patients)</td>
<td>5 (5/5)</td>
<td>5 (5/5)</td>
</tr>
<tr>
<td>RET/PTC (3 patients)</td>
<td>2 (2/3)</td>
<td>1 (1/3)</td>
</tr>
<tr>
<td>Wild-type (3 patients)</td>
<td>1 (1/3)</td>
<td>1 (1/3)</td>
</tr>
<tr>
<td>Total (20 patients)</td>
<td>12 (12/20)</td>
<td>8 (8/20)</td>
</tr>
</tbody>
</table>

- Promising activity with selumetinib was observed in the *RAS MUT* group.
- Approaches for directly targeting RAS activity are lacking (e.g. farnesyl-transferase inhibitors).
- True efficacy/applicability of this approach (ORR, PFS) was not addressed by the pilot study (n=5 patients).
Not All MEK Inhibitors Are Created Equal

Phase II of MEK Inhibition (Trametinib) plus RAI in RAIR, Thyroid Cancers (RAS Mutant)

Cohort A (25 pts)

N, K, H-RAS MUT RAIR, progressive thyroid cancer

Serial 124I PET/CT lesional dosimetry to evaluate trametinib impact upon RAI incorporation

Insufficient 124I PET/CT response
Continue trametinib on Cohort C

Sufficient 124I PET/CT response
Continue trametinib and treat with RAI

Cohort C

Patients with insufficient 124I PET responses (from Cohort A or Cohort B)

Continue trametinib single agent therapy and tumor assessments

Discontinue until POD or toxicity

Primary Objectives (Cohort A): Evaluate PFS at 6 months and overall response at 6 months

Exploratory Objective (Cohort C): BOR, 6-month PFS

NCI/CTEP; GlaxoSmith Kline; NIH R01
<table>
<thead>
<tr>
<th>Tumor Genotype</th>
<th>Patients with increased lesional iodine incorporation after selumetinib (fraction of total)</th>
<th>Patients who received RAI (fraction of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF (9 patients)</td>
<td>4 (4/9)</td>
<td>1 (1/9)</td>
</tr>
<tr>
<td>NRAS (5 patients)</td>
<td>5 (5/5)</td>
<td>5 (5/5)</td>
</tr>
<tr>
<td>RET/PTC (3 patients)</td>
<td>2 (2/3)</td>
<td>1 (1/3)</td>
</tr>
<tr>
<td>Wild-type (3 patients)</td>
<td>1 (1/3)</td>
<td>1 (1/3)</td>
</tr>
<tr>
<td>Total (20 patients)</td>
<td>12 (12/20)</td>
<td>8 (8/20)</td>
</tr>
</tbody>
</table>

Can more potent MEK inhibition with trametinib enhance impact on RAI avidity for \textit{BRAF/RAS WT} tumors?
BRAF MUT Tumors: Beyond MEK Inhibition

<table>
<thead>
<tr>
<th>Tumor Genotype</th>
<th>Patients with increased lesional iodine incorporation after selumetinib (fraction of total)</th>
<th>Patients who received RAI (fraction of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF (9 patients)</td>
<td>4 (4/9)</td>
<td>1 (1/9)</td>
</tr>
<tr>
<td>NRAS (5 patients)</td>
<td>5 (5/5)</td>
<td>5 (5/5)</td>
</tr>
<tr>
<td>RET/PTC (3 patients)</td>
<td>2 (2/3)</td>
<td>1 (1/3)</td>
</tr>
<tr>
<td>Wild-type (3 patients)</td>
<td>1 (1/3)</td>
<td>1 (1/3)</td>
</tr>
<tr>
<td>Total (20 patients)</td>
<td>12 (12/20)</td>
<td>8 (8/20)</td>
</tr>
</tbody>
</table>

Vemurafenib (Zelboraf; Genentech/Daiichi Sankyo)

Potent, selective ATP-competitive inhibitor of BRAF (V600E)

FDA approved for unresectable/metastatic, **BRAF**\(^{V600E}\) mutant melanoma

<table>
<thead>
<tr>
<th>IC50 in vitro (nM) (purified kinases)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF(^{V600E})</td>
<td>35</td>
</tr>
<tr>
<td>BRAF</td>
<td>110</td>
</tr>
<tr>
<td>CRAF</td>
<td>48</td>
</tr>
<tr>
<td>Brk</td>
<td>240</td>
</tr>
<tr>
<td>Kit</td>
<td>610</td>
</tr>
<tr>
<td>KDR</td>
<td>5300</td>
</tr>
</tbody>
</table>
BRAF MUT Tumors: Alternatives to MEK Inhibition

BRAF Mutant Cell (Tumor)
- MUT BRAF
- Inhibitor
- MEK 1/2

BRAF WT Cells (Normal Tissues)
- RAS
- RAF
- RAF
- Inhibitor
- MEK 1/2

Graph:*
- **Drug Exposure**
- **MTD**
- Therapeutic Window
- Effective Tumoral Target Inhibition

References:
- Poulikakos, Cancer Cell, 19: 11-15, 2011
Model of HER3 Mediated Intrinsic, Adaptive Resistance to BRAF Inhibition

Montero-Conde C. et al., Cancer Discover, 3: 520-533, 2013
Future Program Goals

• Continue to develop and optimize this therapeutic strategy
 – Optimizing pathway inhibition
 – Clinically validating the biologic hypothesis
 – Minimizing toxicities.

• Define the appropriate clinical settings in which this approach may be incorporated into standard therapy.

• Explore predictive markers of thyroid “differentiation status” beyond tumor genotype that may predict for susceptibility.
Conclusions

• Sorafenib and Lenvatinib are both FDA-approved for treatment of RAIR thyroid cancers.

• When to initiate therapy needs to balance risks/benefits of drug therapy with the risk posed by the disease.

• New therapeutic approaches being tested involve matching individual molecular profiling with selective molecular inhibitors.

• Several different approaches utilizing selective MAPK pathway inhibitors to enhance RAI avidity/efficacy in a variety of clinical studies are under investigation.
Acknowledgements

Nuclear Medicine, Radiochemistry, Medical Physics
Desiree D’Andreis, MD
Mark Dunphy, MD
Joseph Fox, MD
Somali Gavane, MD
Ravinder K. Grewal, MD
Steve M. Larson, MD
Neeta Pandit-Taskar, MD
Keith S. Pentlow, PhD
Pat B. Zanzonico, PhD

Endocrinology
Laura Boucau
Stephanie Fish, MD
James A. Fagin, MD
Rebecca Leboeuf, MD
Mona Sabra, MD
R. Michael Tuttle, MD

Epidemiology and Biostatistics
Ronglai Shen, PhD
Camelia Sima, MD

Pathology
Ronald Ghossein, MD
Nora Katabi, MD

Support
NIH SPORE program
NIH R01
NCI/CTEP
Cycle for Survival
AstraZeneca
Genentech/Roche
Novartis

HOPP (James Fagin Lab)
Debyani Chakravarty, PhD
Jennifer Cracchiolo
Jose Domínguez, MD
Javier Leandro Garcia
Jeff Knauf, MD
Gnana Krishnamurty
Inigo Landa
Cristina Montero-Conde, PhD
James Nagarajah MD
Julio Cezar M. Ricarte-Filho, PhD
Brian Untch
Maria Elena Rodríguez García Rendueles
Majesh Saqcena
Francesca Voza