EVALUATION AND MANAGEMENT OF THE HIRSUTE PATIENT

Ricardo Azziz, M.D., M.P.H., M.B.A.

State University of New York (SUNY) System Administration
LEARNING OBJECTIVES

• Counsel patients concerning the differential diagnosis of hirsutism

• Devise an effective diagnostic scheme to evaluate patients with hirsutism

• Understand the therapeutic options for the treatment of hirsutism
COI

• Consulting for Longitude Capital; and Ansh Labs; and on the advisory board for GlobalPET Imaging.
SIGNS OF HYPERANDROGENISM IN WOMEN

• Dermatologic
 – Hirsutism
 – Acne
 – Alopecia

• Ovulatory dysfunction
 – DUB/AUB
 – Oligo‐amenorrhea
 – Oligo‐ovulatory eumenorrhea

• Virilization
 – Masculinization
 – Clitoromegaly
 – Severe hirsutism
 – Male‐pattern balding
Differential Diagnosis Among 873 Consecutive Untreated Patients Evaluated for Androgen Excess

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Total #</th>
<th>% Prevalence</th>
<th>% Unbiased Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASN</td>
<td>2</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>CAH</td>
<td>6</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>NCAH</td>
<td>18</td>
<td>2.06</td>
<td>1.60</td>
</tr>
<tr>
<td>HAIRAN</td>
<td>33</td>
<td>3.78</td>
<td>3.12</td>
</tr>
<tr>
<td>Disorders of exclusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCOS</td>
<td>716</td>
<td>82.02</td>
<td></td>
</tr>
<tr>
<td>IH</td>
<td>39</td>
<td>4.47</td>
<td>4.68</td>
</tr>
<tr>
<td>HA+Hirsutism</td>
<td>59</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>873</td>
<td>100.00%</td>
<td></td>
</tr>
</tbody>
</table>

VIRILIZING OVARIAN TUMORS

• < 1% of all ovarian neoplasms
• 1/300-1/1000 of hirsutism cases
• Majority are palpable (> 5 cm)
• Low malignancy/mortality
• Pathology:
 Sertoli-Leydig cell/ androblastoma
 Granulosa-theca cell
 Adrenal-like (incl. lipoid cell)
 Hilar (thecal, leydig, mets)
THE SENS, SPEC, AND NPV & PPV OF A TOTAL T >250 NG/DL OR A DHEAS >6000 NG/ML FOR THE DETECTION OF AN ANDROGEN-SECRETING NEOPLASM (AAN)

At UAB, among 478 consecutive HA women, only one (0.2%) had an ovarian AAN

<table>
<thead>
<tr>
<th></th>
<th>SENS</th>
<th>SPEC</th>
<th>NPV</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total T >250 ng/dL</td>
<td>100%</td>
<td>98%</td>
<td>100%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>(1/1)</td>
<td>(467/477)</td>
<td>(467/467)</td>
<td>(1/11)</td>
</tr>
<tr>
<td>DHEAS >6000 ng/mL</td>
<td>N/A</td>
<td>98%</td>
<td>100%</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(468/478)</td>
<td></td>
<td>(468/468)</td>
<td></td>
</tr>
</tbody>
</table>

CLINICAL DATA ON 14 WOMEN WITH VIRILIZING ADRENAL TUMORS

- Two w/ adenomas and 12 w/ Ca
- 13 of 14 were either virilized (11) and/or Cushingoid (6)
- 10/14 had had hirstuism for ≤ 2 yrs
- 7/14 and 4/14 had onset of hirsutism after ages 30 and 50 yrs, resp.

DHEAS AND TOTAL T LEVELS IN PATIENTS WITH ADRENAL ASN

ADRENOCORTICAL STEROIDOGENESIS IN P450c21 DEFICIENCY

ENZYME DESIGNATION

Cholesterol side-chain cleavage CYP11A
17α-Hydroxylase CYP17
17,20-Lyase CYP17
21-Hydroxylase CYP17
11β-Hydroxylase CYP11B1
Aldosterone synthase CYP11B2
Aromatase CYP19
3β-Hydroxysteroid dehydrogenase 3βHSD
17β-Hydroxysteroid dehydrogenase 17βHSD
5α-Reductase 5αRed

Modified from Donahoe PK, Crawford JD: In Welch KJ et al, editors: Pediatric surgery, ed 4, vol 2, Chicago, 1986, Year Book Medical Publishers
THE 21-OH DEFICIENCY CONTINUUM

SW-CAH

SV-CAH w/ renin

SV-CAH w/ nl renin

NCAH < 8 y.o.

NCAH 8 - 18 y.o.

NCAH > 18 y.o.
PREVALENCE OF 21-OH DEFICIENT NCAH AMONG HYPERANDROGENIC WOMEN

<table>
<thead>
<tr>
<th>Country</th>
<th>Total</th>
<th>NCAH</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA (NE)</td>
<td>139</td>
<td>2</td>
<td>Cobin et al, 1985</td>
</tr>
<tr>
<td>USA (NE)</td>
<td>116</td>
<td>16</td>
<td>Pang et al 1985</td>
</tr>
<tr>
<td>USA (NE)</td>
<td>164</td>
<td>4</td>
<td>Azziz & Zacur 1989</td>
</tr>
<tr>
<td>USA (SE)</td>
<td>86</td>
<td>2</td>
<td>Azziz et al, 1993</td>
</tr>
<tr>
<td>USA (SW)</td>
<td>83</td>
<td>1</td>
<td>Chetkowsk at al, 1984</td>
</tr>
<tr>
<td>Canada</td>
<td>72</td>
<td>4</td>
<td>Innanen & Vale 1990</td>
</tr>
<tr>
<td>Ireland</td>
<td>96</td>
<td>6</td>
<td>McLaughlin et al, 1990</td>
</tr>
<tr>
<td>France</td>
<td>400</td>
<td>24</td>
<td>Kuttenn et al, 1965</td>
</tr>
<tr>
<td>Italy (South)</td>
<td>372</td>
<td>15</td>
<td>Carmina et al, 1987</td>
</tr>
<tr>
<td>Italy (North)</td>
<td>85</td>
<td>1</td>
<td>Motta et al, 1988</td>
</tr>
<tr>
<td>Spain</td>
<td>270</td>
<td>6</td>
<td>Escobar-Morreale, 2008</td>
</tr>
<tr>
<td>India</td>
<td>60</td>
<td>3</td>
<td>Mithal et al, 1988</td>
</tr>
<tr>
<td>India</td>
<td>63</td>
<td>3</td>
<td>Khandekar et al, 1990</td>
</tr>
<tr>
<td>Jordan</td>
<td>so</td>
<td>5</td>
<td>Arnaout, 1992</td>
</tr>
<tr>
<td>Israel</td>
<td>170</td>
<td>14</td>
<td>Eldar-Geva et al, 1990</td>
</tr>
<tr>
<td>Overall</td>
<td>1956</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>
PROBABILITY OF 21-OH DEFICIENT NCAH ACCORDING TO STIMULATED 17-HP LEVEL

- <10 ng/ml (30 nmol/L) < 2%
- 10-15 ng/ml (30-45 nmol/L) 20-60%
- 16-200 ng/ml (>45 nmol/L) > 96%
- >200 ng/mL (600 nmol/L) < 10%
BASAL 17-HP LEVELS IN 308 NCAH PATIENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>% of NCAH Subjects</th>
<th>Basal 17-HP Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>11.7%</td>
<td><2 ng/mL</td>
</tr>
<tr>
<td>28</td>
<td>9.0%</td>
<td>2-3 ng/mL</td>
</tr>
<tr>
<td>39</td>
<td>12.7%</td>
<td>3-4 ng/mL</td>
</tr>
<tr>
<td>91</td>
<td>29.5%</td>
<td>4-10 ng/mL</td>
</tr>
<tr>
<td>114</td>
<td>37.0%</td>
<td>>10 ng/mL</td>
</tr>
</tbody>
</table>

NCAH Multicenter Study Group (unpublished)
SPECIFICITY: BASAL 17-HP LEVELS IN 8 NORMO-OVULATORY HEALTHY WOMEN

HAIRAN Syndrome

• Features:
 – HyperAndrogenic
 – Insulin Resistant
 • Basal INS > 50-80 µU/mL, or
 • Peak stimulated INS > 300-500 µU/mL
 – Acanthosis Nigricans

• Metabolic Syndrome

• Distinct entity?
 – Form of lipodystrophy
 – Variant of PCOS?
IDIOPATHIC HIRSUTISM

• Define strictly:
 – No evidence of increased circulating androgen levels
 – Normal ovarian morphology
 – Regular ovulation (and not just regular menstrual cycles)

• Often familial, although not more than other disorders
• May be due to increased peripheral utilization or sensitivity to androgens
• May reflect inadequate laboratory analysis
• Generally no more than 5% of hirsute women

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Phenotypes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Hirsutism/HA</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Ovulatory Dysfunction</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Polycystic ovaries</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>NIH 1990*</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotterdam 2003*</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>AE-PCOS 2006*</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Always exclude related/similar/mimicking disorders (17-HP, TSH, Prl)
ROTTERDAM 2003 AND AE-PCOS 2006 ARE EXPANSIONS OF NIH 1990
HYPERANDROGENISM IN PCOS IS ASSOCIATED WITH RISK OF METABOLIC SYNDROME

Age-adjusted prevalence of MS is higher in all hyperandrogenic phenotypes of PCOS, compared to the non-hyperandrogenic PCOS phenotype and to controls.

-insulin resistance

Hyperinsulinemia

Hepatic SHBG suppression

Hyperandrogenism

Hepatic ShBG suppression

LH receptor

Insulin receptor

Ovarian theca stimulation

Obesity

Genetic syndromes

Insulin post-receptor abnormalities

Adipose tissue dysfunction

Anti-insulin-receptor antibodies
SEVERITY OF MENSTRUAL DYSFUNCTION PREDICTS DEGREE OF IR IN 494 PCOS

PREVALENCE OF GLUCOSE INTOLERANCE & TYPE 2 DM IN PCOS

**Ehrmann et al. Diabetes Care 1999; 22:141
*Legro et al. J Clin Endocrinol Metab 1999; 84:165
*Azziz et al. J Clin Endocrinol Metab 2001; 86:1626

- University of Chicago: 122
- Penn State Univ: 144
- Mt Sinai: 110
- Rezulin Collab Grp: 408

TOTAL: 784
PREDICTIVE VALUE OF A FASTING GLUCOSE VALUE ON OGTT STATUS

Legro et al. J Clin Endocrinol Metab 1999;84:165-9
The Diagnosis of Polycystic Ovary Syndrome during Adolescence

Selma F. Witchela Sharon Oberfieldb Robert L. Rosenfieldc Ethel Codnerd Andrea Bonnye Lourdes Ibáñezf Alexia Penag Reiko Horikawah Veronica Gomez-Loboi Dipesalma Joelj Hala Tfaylik Silva Arslanianl Preeti Dabadghaom Cecilia Garcia Rudazn Peter A. Leeo

aDepartment of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pa., bDepartment of Pediatrics, Morgan Stanley Children's Hospital, New York, N.Y., and cSection of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, Ill., USA; dEndocrinología y Diabetes Infantil, Instituto de Investigaciones Materno Infantil, Universidad de Chile, Santiago, Chile; eThe Ohio State University, Nationwide Children's Hospital, Columbus, Ohio, USA; fHospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain; gDepartment of Paediatrics, The University of Adelaide, Women's and Children's Hospital, Adelaide, S.A., Australia; hDivision of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan; iPediatric and Adolescent Obstetrics/Gynecology, Washington Hospital Center/Children's National Medical Center, Clinical Obstetrics/Gynecology, Georgetown University, Washington, D.C., USA; jBotswana-Baylor Children's Clinical Centre of Excellence, Princess Marina Hospital, Gaborone, Botswana; kDepartment of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; lChildren's Hospital of Pittsburgh of UPMC, Pittsburgh, Pa., USA; mSanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; nDepartment of Paediatric Diabetes and Endocrinology, Monash Children’s Medical Centre, Clayton, Vic., Australia; oPenn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pa., USA.
EVALUATION OF THE HYPERANDROGENIC/HIRSUTE PATIENT

• HISTORY:
 Drugs/skin irritants/menses/onset and progression/change in weight/change in head or extremity size/family

• PHYSICAL:
 Hair pattern and type/galactorrhea/acanthosis/cushingoid features/clitoromegaly or virilization/regional distribution of obesity
EVALUATING FOR CLINICAL HYPERANDROGENISM: THE MODIFIED F-G (mFG) SCORE
EVALUATING FOR CLINICAL HYPERANDROGENISM: THE MODIFIED F-G (mFG) SCORE

Yildiz et al, Hum Reprod Update 2010;16:51–64
Cluster analysis indicates that an mFG score of ≥3 may indicate abnormal terminal hair growth.
THE PREVALENCE OF AN ANDROGEN EXCESS DISORDER IN WOMEN WITH MINIMAL UNWANTED HAIR GROWTH

• 228 patients with minimal unwanted hair growth (\(mF-G \leq 5\))

• 54% demonstrated an AE disorder
 – 50%: PCOS
 – 2%: HAIRAN Sx
 – 2%: NCAH

• And it's not only in those subjects with abnormal menses:
 – 65% of those with menstrual irregularities had an AE disorder
 – 22% of those with normal menstrual function had an AE disorder

Souter et al, AJOG. 2004;191:1914–20
LABORATORY EVALUATION OF THE HIRSUTE OR POTENTIALLY HYPERANDROGENIC PATIENT

- **TSH & PRL**
 - In oligo-ovulatory patients, to R/O other causes of ovulatory dysfunction

- **17-HP**
 - To R/O 21-OH deficient NCAH

- **d. 22-24 P4 level**
 - In hirsute eumenorrheic women, 40% of which are anovulatory

- **Total & free T (and DHS AND A4?)**
 - Most importantly, in evaluating non-hirsute or minimally hirsute patients to R/O Androgen Excess
 - **MUST USE HIGH-QUALITY WELL-REFERENCED ASSAY**
ANDROGEN LEVELS IN PCOS: LIMITED SENSITIVITY OF MEASURING ONLY TOTAL T

• In NIH 1990 (classic) PCOS patients, using high quality sensitive assays (for TT, FT & DHEAS) ~75% demonstrate HA

• Alternatively, in NIH 1990 (classic) PCOS patients if TT alone is measured (using a high quality RIA) then only 33% of demonstrate HA

• ~50% of PCOS phenotype studies assessed only TT, usually using a chemiluminescent platform assay, so one can expect that in these studies detection rates for HA will be well less than 30%

Prevalence of specific combinations of androgen levels in NIH 1990 PCOS

<table>
<thead>
<tr>
<th>Total T</th>
<th>Free T</th>
<th>DHEAS</th>
<th>% patients with PCOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>24.7%</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>Normal</td>
<td>20.4%</td>
</tr>
<tr>
<td>Normal</td>
<td>↑</td>
<td>Normal</td>
<td>20.0%</td>
</tr>
<tr>
<td>↑</td>
<td>Normal</td>
<td>↑</td>
<td>13.8%</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>8.7%</td>
</tr>
<tr>
<td>Normal</td>
<td>↑</td>
<td>↑</td>
<td>8.5%</td>
</tr>
<tr>
<td>↑</td>
<td>Normal</td>
<td>↑</td>
<td>2.2%</td>
</tr>
<tr>
<td>↑</td>
<td>Normal</td>
<td>↑</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

WHY ARE ANDROGEN LEVELS “NORMAL” IN SOME PATIENTS WITH AE?

• 20% of patients with AE/PCOS have normal androgen levels
• The measurement of androgens is notoriously difficult, particularly in women
• The “normal” range for an assay kit is often established by the manufacturer and not the user; and are often established using women not clearly “normal”
• There is no tight endocrine regulation of androgen levels in women (or men), permitting a wide variability in androgen levels among individuals
TREATMENT OF ANDROGEN EXCESS

• Goals include treatment & prevention of:
 – Dermatologic disorders (hirsutism, acne, alopecia)
 – Ovulatory & menstrual dysfunction (DUB, endometrial hyperplasia or Ca)
 – Metabolic abnormalities, incl. dyslipidemia, glucose intolerance & obesity
 – Infertility

• Optimum treatment is generally combination therapy
MEDICAL THERAPY OF ANDROGEN EXCESS: Source suppression

• **Ovarian:**
 – OCPs
 – Estrogen/Progestin
 – Metformin/Thiazolidinediones
 – GnRH-a

• **Adrenal:**
 – Dex/Prednisone

• **Both:**
 – Ketoconazole
COMBINATION ORAL CONTRACEPTIVE

↑ SHBG

↓ LH

↑ Testosterone Binding Capacity

↓ Testosterone Production

↓ Free Testosterone Levels
MEDICAL THERAPY OF ANDROGEN EXCESS:
Androgen blockade

- Spironolactone
- Flutamide
- Cyproterone acetate
- Finasteride
ANTIANDROGENS IN HIRSUTISM

Ferriman-Gallwey score

- Flutamide
- Spironolactone
- Finasteride
- Placebo

Hair shaft diameter

*P<0.01 placebo vs. other groups

Moghetti et al. J Clin Endocrinol Metab 2000; 85:89-94
HIRSUTISM SCORE BEFORE AND AFTER TREATMENT WITH DIANE-35 OR DIANE-35 + FINASTERIDE IN PATIENTS WITH IH OR PCOS

IH

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>3 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diane-35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diane-35 + finasteride</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCOS

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>3 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diane-35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diane-35 + finasteride</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < .005 vs. basal values; †P < .002 vs. basal values; ‡P < .05 vs. Diane-35 at the respective time point

Tartagni et al. Fertil Steril 73:718, 2000
LONG-TERM OUTCOME OF HIRSUTISM TREATMENT WITH AN OCP + SPIRONOLACTONE* COMBINATION IN 138 WOMEN WITH PCOS, ACCORDING TO INITIAL mFG SCORE

*OCP = Mostly 35 mg Ethinyl Estradiol and 1 mg Ethynodiol Diacetate; Spironolactone = 100mg/d for initial mFG 3-7; or 200 mg/d for initial mFG>8

Ezeh, unpublished
METFORMIN THERAPY IN PCOS

• Metformin is an agent that acts indirectly and modestly to:
 – Improve ovulation
 – Reduce long-term metabolic complications
METFORMIN VS. DIANE NOVA IN OBESE PCOS: A 6 MOS RANDOMIZED STUDY

*Metformin administered as 1000 mg/d x 3 mos, then 2000 mg/d x 3 mos

Morin-Papunen et al. J Clin Endocrinol Metab 2000;85:3161
TREATMENT OF ANDROGEN EXCESS-RELATED DERMATOLOGIC SYMPTOMS: PROGNOSIS

In general, we see the following sequence of improvement in clinical symptoms:

- ACNE (2-8 weeks)
- OLIGO-OVULATION (2-6 mos.)
- HIRSUTISM (3-8 mos.)
- ALOPECIA (6-18 mos.)
TREATMENT OF ANDROGEN EXCESS-RELATED HIRSUTISM: Mechanical/cosmetic

- Plucking: No!
- Waxing: No!
- Shaving
- Bleaching
- Chemical depilators
- Electrolysis
- Lasers

Must be combined with medical suppression for optimum results
PHYSICIAN’S GLOBAL ASSESSMENT OF THE EFFICACY OF EFLORNITHINE HCL CREAM, 13.9%: POOLED ANALYSIS

58% of subjects showed improvement

*Clinical success as defined by protocol

**P = 0.007

*** P = 0.001
THANK YOU