Pheochromocytoma

AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGY
ILLINOIS CHAPTER
OCTOBER 13, 2018

Steven A. De Jong, M.D., FACS, FACE
Professor and Vice Chair of Surgery
Chief, Division of General Surgery
Loyola University Medical Center
Pheochromocytoma facts

- Catecholamine-secreting tumor of the neuroectodermal cells of the adrenal medulla (chromaffin cells of the neural crest)
- Central torso location along the sympathetic chain
- Incidence = 0.1-0.4% of HTN patients;
- M=F and found in the 4th-5th decade of life
- 25% found incidentally; 4-8% of incidentalomas
- Can be asymptomatic (10-20%) and normotensive (10-20%)
- Delay of 3 years from initial symptoms to diagnosis
- Hereditary forms – MEN2, Von Hippel Lindau, Neurofibromatosis type 1 and familial paraganglioma
Pheochromocytoma

?? Still the “Tumor of 10’s”

- 10% Bilateral (higher in MEN2 pts. and children)
- 10% Malignant (higher in extra-adrenal tumors)
- 10% Extra-adrenal (most [98%] are in the abdomen)
- 10% Children
- 10% Familial – incidence probably 10-24%
Adrenal medulla

Catecholamine synthesis

- PNMT (phenylethanolamine-N-methyltransferase) present only in adrenal medulla and organ of Zukerkandl
- Most extra-adrenal pheos can only make norepinephrine
Clinical presentation of Pheochromocytoma

- Episodic headaches
- Sweating
- Tachycardia/Palpitations
- Chest pain/MI
- Anxiety/panic attacks
- Abdominal pain/N & V
- Precipitated “spells”
- Sustained HTN
- Paroxysmal HTN
- Sustained/Paroxysmal HTN
- HTN crisis
- Fever
- Glucose intolerance
- GI dysmotility
Pheochromocytoma principles

- Biochemical diagnosis first then imaging
- Biochemically screen all retroperitoneal masses
- Episodic catecholamine production, but continuous metabolism of byproducts allows diagnosis. Distinguishing true positive from false positive biochemical testing remains a challenge
- Always alpha block before beta – unopposed alpha stimulation can result in catastrophic HTN crisis, CVA, Pulmonary edema, CHF, sudden death, etc.
- No FNAB without biochemical screening
 - Only for patients with primary extra-adrenal malignancy (breast, lung, renal, ovarian, melanoma, lymphoma, etc.)
Pheochromocytoma

Biochemical diagnosis

- 24 hour urine collection is 98% sensitive and 98% specific and is usually elevated 4-fold above upper reference limits
 - Free catecholamines, total/fractionated metanephrine, VMA
 - Plasma free metanephrines
 - Easy to obtain and frequently is first test performed
 - Highly sensitive (99%) to exclude pheo with normal values, but not as specific (85%) as 24-hour urinary testing
- Plasma epinephrine & norepinephrine levels variable
- Chromogranin A levels – limited s/s but useful in assessing tumor burden and disease progression in patients with malignancy
- Clonidine suppression test rarely used – lowers plasma catecholamines after 0.3 mg oral dose administers
Pheochromocytoma
Who should undergo biochemical screening?

- Paroxysmal HTN
- Therapy resistant HTN
- Volatile HTN
- Severe intraoperative HTN
- Younger patients < 40 years of age
- Hereditary predisposition
- Sudden anxiety attacks
- Incidentalomas
Preoperative medical blockade
Lowered perioperative mortality from 45% to < 2%

- Alpha blockade started 2-4 weeks preoperatively in all pheo patients and always prior to beta blockade (if needed)
 - Phenoxybenzamine – non-selective, non-competitive with 24-hr. half-life and possible tachycardia; goal is mild orthostasis and nasal congestion
 - Doxazocin (Cardura) – selective, but ? less effective in highly active tumors
 - Terazosin & Prazosin – shorter half life needing more frequent dosing
 - Phentolamine, Labetalol, α-methyltyrosine, etc.
 - Calcium channel blockers (Amlodipine, Nifedipine, Nicardipine) – no tachycardia and may limit coronary spasm
- Beta blockade – only after alpha blockade to treat tachyarrythmias
 - Propranolol, Atenolol, Esmolol (intra-op), Labetalol, etc.
Pheochromocytoma imaging

- Abdominal/Pelvic CT scanning
- Abdominal MRI
 - High intensity T2-weighted images
 - Evaluate IVC and hepatic invasion
- MIBG – 123I-MIBG ideal & 131I-MIBG for ablation
- PET scanning - DOTATATE
When do we need a 123I-MIBG scan?

- Marginal biochemical diagnosis
- Extra-adrenal tumors
- Multiple tumors
- Suspicion of malignancy
- Normal adrenal imaging
- PET scanning may be superior
- Therapeutic ablation with 131I-MIBG
- Unnecessary in most sporadic benign tumors
Pheochromocytoma

Surgical management

- Hemodynamic monitoring and IV agents available
- Pre, intra, and postoperative volume expansion
- Anesthesia expertise – enflurane or isoflurane to limit catecholamine release
- Early adrenal vein ligation with minimal tumor manipulation
- Laparoscopic adrenalectomy advisable
 - Expect a highly vascular tumor
 - Avoid capsular rupture
 - Appropriate for larger tumors – poor size correlation for malignancy
- Manage po hypotension and hypoglycemia
Laparoscopic adrenalectomy

- Route of choice for most removal of most pheochromocytomas
- Advanced laparoscopic procedure
- Transperitoneal vs. retroperitoneal approach
- High success rates (R/L/B); similar OP times as open
- Decreased pain, hospitalization, and morbidity with earlier return to activity, & ? lower cost
- Combine with other laparoscopic procedures
Pheochromocytoma
Who should undergo genetic screening?

- Young patients < 35 years of age
- Bilateral tumors
- Extra-adrenal tumors
- Paragangliomas
- Malignant tumors
- Family history of genetic syndromes
- ?? All patients
Malignant pheochromocytoma

- Benign vs. malignant often difficult
- Recurrence = 0-17% after resection for “benign” tumors
 - Long term surveillance with biochemical testing essential
- Operative vs. pathologic diagnosis
- Resection/debulking may lower catecholamine production and allow more effective medical control of HTN
- Metastases to bone, lung, liver, CNS, lymph nodes, etc.
- MIBG, chemotherapy, RFA, chemo/arterial embolization, & RT are options with limited success
- 5-year survival 30-60% - goal is palliation of HTN symptoms
- Cortical sparing may increase recurrence rates