Hypercalcemia &
Parathyroid Disorders

W. Reid Litchfield, MD, FACE, ECNU
Desert Endocrinology
Objectives

• Review diagnostic workup for hypercalcemia
• Review management of primary hyperparathyroidism
• Review management of hypoparathyroidism
Approaching Hypercalcemia

• Broad differential diagnosis for hypercalcemia
 • PTH-dependent and PTH-independent hypercalcemia
 • 90% Rule
• Clinical acumen and focused testing is key to quick and cost-effective evaluation
 – Medical History
 – Two-tiered approach to diagnostic testing in the outpatient setting
Hypercalcemia: Differential Diagnosis

<table>
<thead>
<tr>
<th>PTH Dependent</th>
<th>PTH Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Hyperparathyroidism (PHP)</td>
<td>Hypercalcemia of Malignancy (HOM)</td>
</tr>
<tr>
<td>Familial Hypercalcemic Hypocalciuria</td>
<td>Vitamin D Toxicity</td>
</tr>
<tr>
<td>Tertiary Hyperparathyroidism</td>
<td>Chronic Granulomatous Disease</td>
</tr>
<tr>
<td>MEN Syndromes</td>
<td>Thyrotoxicosis</td>
</tr>
<tr>
<td>Hyperparathyroidism-Jaw Syndrome</td>
<td>Adrenal Insufficiency</td>
</tr>
<tr>
<td>Familial Isolated Hyperparathyroidism</td>
<td>Pheochromocytoma</td>
</tr>
<tr>
<td></td>
<td>Acromegaly</td>
</tr>
<tr>
<td></td>
<td>Immobilization</td>
</tr>
<tr>
<td></td>
<td>Parenteral Nutrition</td>
</tr>
<tr>
<td></td>
<td>Milk-Alkalai Syndrome</td>
</tr>
<tr>
<td></td>
<td>Dehydration</td>
</tr>
</tbody>
</table>
Hypercalcemia: 90th Percentile

Primary Hyperparathyroidism
- Asymptomatic or mild symptoms
- Lower calcium
- Chronic hypercalcemia
- Outpatient setting

Hypercalcemia of Malignancy
- Recognized malignancy
- More symptomatic
- Higher calcium
- Hospital setting
Primary Hyperparathyroidism

- Excessive production of PTH by parathyroid glands
 - Single adenoma: 90%
 - Double adenoma: 5%
 - Multi-gland hyperplasia: 5%
- PTH Actions
 - Bone: increased mobilization of calcium via osteoclasts
 - Kidney
 - Increases production of $1,25(\text{OH})_2\text{D}$
 - Increases tubular reabsorption of calcium
 - Decreases tubular reabsorption of phosphate
Primary Hyperparathyroidism

• Symptoms
 – 80% asymptomatic or mild
 – Non-specific
 • fatigue, cognitive, depression, neuromuscular
 • sometimes only realized post-parathyroidectomy
 – Classic
 • polyuria, nephrolithiasis
 • neuromuscular, bone pain, musculoskeletal
 • abdominal pain, constipation, anorexia, nausea
 • neuropsychiatric symptoms
Hypercalcemia of Malignancy

• 20-30% of cancer patient have hypercalcemia
• Most common malignancies
 – Breast Cancer
 – Lung Cancer
 – Multiple Myeloma
• Most have clinically evident disease, poor prognosis
• Treatment
 – IV bisphosphonates: zoledronic acid, pamidronate
 – Calcitonin – severe hypercalcemia
 – Steroids – selected cases
HOM: Mechanisms of Action

PTHrp

– 80% of HOM
– Binds to PTH receptor
– Increased mobilization of calcium from bone
– Increase reabsorption of calcium in renal tubule
 • Squamous Cell Ca (head, neck, lung)
 • Renal Cell Ca
 • Bladder Ca
 • Breast Ca
 • Ovarian Ca
HOM: Mechanism of Action

Osteolytic Bone Lesions

- 20% of HOM
- Production of cytokines which activate osteoclasts
- Increased mobilization of calcium from bone
 - Breast Ca
 - Multiple Myeloma
 - Leukemia/Lymphoma
HOM: Mechanism of Action

- 1,25-Dihydroxy D
 - Increased production by malignant lymphocytes and macrophages
 - Absorptive hypercalcemia
 - Responds best to steroids
 - Hodgkins Ds
 - NHL
Outpatient Evaluation of Hypercalcemia

• History
 – Symptom severity & duration
 – Duration and severity of hypercalcemia
 – Associated Conditions
 – FHx
 – Medications

• Two-Tiered Diagnostic Testing
 – Initial Workup
 – Expanded Workup (if necessary)
Hypercalcemia: Initial Workup

- Chemistry
 - Calcium
 - Albumin
 - Liver chemistry
 - Renal function
 - Electrolytes
- CBC
- TSH

- Ionized calcium
- Phosphorus
- Intact PTH
- 24 hour urine calcium
- 25-OH-D
Diagnosis Confirmed . . .

Primary Hyperparathyroidism

– Elevated calcium, ionized calcium
– PTH
 • Elevated
 • Upper normal range in 10-20% of PHP
– 24-hour urine calcium elevated
– Phosphorus
 • Usually low
– 25-OH-D
 • usually low in PHP
Diagnosis Confirmed . . .

Familial Hypercalcemic Hypocalciuria (FHH)

- Mutation of calcium sensor: calcium resistance
- Lifelong hypercalcemia with positive FHx
- Elevated calcium, ionized calcium
- PTH: high normal to mildly elevated
- 24-hour urine calcium: low
- Genetic testing available
Hypercalcemia: Expanded Workup

• PTHrp
• 1,25-dihydroxy D
• Serum ACE
• SPEP/UPEP
• Vitamin A

• IF clinically indicated
 – Chest Imaging
 – Cortisol/ACTH
 – Catecholamines
 – IGF-1
 – Genetic testing for FHH
Secondary Workup

• HOM
 relevant medical history
 ± elevated PTHrp
 ± elevated 1,25(OH)$_2$D

• Granulomatous Disease (TB, sarcoidosis, etc)
 relevant medical history and diagnostic imaging
 elevated angiotensin converting enzyme
 ± elevated 1,25(OH)$_2$D
Management of Primary Hyperparathyroidism
Additional Testing

• DEXA Scan
 – increased incidence of bone loss
 • Cortical Bone > Trabecular Bone
 • (wrist, hip > spine)
 – increased incidence of fractures
 • paradoxically higher in the spine!

• Localization of Disease
 – biochemically confirmed disease
 – operative planning
Localization of Disease

• Neck Ultrasound
 – characteristics: hypoechoic, homogeneous, polar artery
 – First-line investigation
 – highly cost-effective
 – highly operator-dependent
 – reduced sensitivity if
 • co-existing thyroid disease (20-30%)
 • obesity
 • ectopic glands
Localization of Disease

• Sestamibi Scintigraphy
 – technetium-99m-methoxyisobutylisonitrile (99m-Tc-sestamibi or MIBI)
 – identifies hyperfunctioning parathyroid tissue, but little anatomical detail
 – negative scan in up to 25%
 • small size
 • superior location
 • multigland disease
 • co-existing thyroid disease
Localization of Disease

• Sestamibi SPECT (MIBI-SPECT)
 – 3 dimensional MIBI scintigraphy
 – improves performance of MIBI scanning
 • anatomic location relative to thyroid
 • better for ectopic glands
 • still can miss multigland disease

• MIBI-SPECT/CT Fusion
 – adds benefits of CT to discern other anatomical landmarks
Localization of Disease

• Subtraction Thyroid Scan
 – dual isotope scanning
 • MIBI: parathyroid
 • 123I or 99mTc-pertechnetate (thallium): thyroid & parathyroid glands
 – digital subtraction of thyroid image shows parathyroid pathology
Localization of Disease

- 4 Dimensional CT
 - CT for anatomic visualization of neck
 - 4th dimension makes use of rapid uptake and washout of contrast by parathyroid adenomas
 - disadvantage: > 50-fold greater radiation exposure to thyroid vs MIBI
 - radiation to thyroid increases risk of thyroid cancer
 - use selectively in young patients
Localization of Disease

• MRI
 – adenoma
 • intermediate to low signal intensity on T1
 • high signal intensity on T2
 – cervical nodes look similar and may limit usefulness
 – doesn’t require iodinated contrast material

• PET/CT
 – PET/CT fusion technology that uses 11C-methionine is a radiotracer to localizes pathological parathyroids (MET-PET-CT)
Indications for Surgery

Asymptomatic Patients with 1 or more of the following:

- < 50 yrs of age
- Serum calcium > 1 mg/dl over upper limit normal
- Osteoporosis
 - vertebral fracture by CT, MRI or VFA
 - DEXA T score < -2.5 in total hip, femoral neck, lumbar spine or distal 1/3 radius
- Nephrolithiasis or nephrocalcinosis
- Urine calcium > 400 mg/day
- eGFR < 60
Surgical Management

Minimally Invasive Parathyroidectomy
- pre-op localization generally recommended for surgical planning
- experienced parathyroid surgeon
- intraoperative PTH monitoring

Reoperation for Recurrent or Persistent Disease
- needed in 5-10% of patients
- pre-op localization is important
 - imaging
 - +/- FNA aspiration for PTH
- experienced parathyroid surgeon
- increased incidence of complications due to fibrosis from prior surgery
 - permanent hypoparathyroidism
 - RLN injury
 - unsuccessful surgery
Medical Management

Cinacalcet

- calcimimetic activates calcium receptor in parathyroid tissue
- decreases PTH secretion
- does not improve bone density
- favorable response rates in 75% of patients
- starting dose 30 mg po QD and increase as needed to 30-60 mg BID
- Side Effects - up to 35%
 - nausea/diarrhea
 - arthralgia/myalgia
- VERY expensive
- not the equivalent to a medical parathyroidectomy
Watchful Waiting

Surveillance
- monitor renal function, calcium - Q6-12months
- DEXA every two years

Preventive Measures
- adequate hydration to reduce nephrolithiasis
- regular exercise to minimize bone resorption
- moderate calcium intake (1000 mg/day)
- moderate vitamin D levels (20-30 ng/mL)
- avoidance hypercalcemic triggers
 - prolonged bedrest or inactivity
 - thiazide diuretics, lithium
 - excessive intake of calcium or vitamin D
 - volume depletion
Management of Hypoparathyroidism
Hypoparathyroidism Overview

Etiology

• post-surgical hypoparathyroidism
• polyglandular autoimmune syndrome 1
 – hypoparathyroidism
 – adrenal insufficiency
 – mucocutaneous candidiasis

Symptoms

• numbness, paresthesias
• muscle cramps, tetany
• seizures
• arrhythmia
Hypoparathyroidism Management

Emergency Management
• severe hypocalcemia
 – tetany, carpopedal spasm AND
 – serum calcium < 7.5 mg/dl
• IV calcium
 – 1-2 grams calcium gluconate (90-180 mg elemental calcium) in 50 ml
 5% dextrose over 10-20 minutes
 – often provides transitory relief of symptoms for 3-4 hrs
 – 11 grams of 10% calcium gluconate (990 mg elemental calcium/110 ml)
 in 5% dextrose (remove 110 ml 5% dextrose) = 1 mg/ml elemental calcium solution
 • infuse over 24 hrs (40 ml/hr)
• Oral Maintenance
 – initiate oral calcium 1-2 grams elemental calcium in divided doses (TID to QID)
 – initiate calcitriol 0.25-0.5 mcg BID
Hypoparathyroidism Management

Chronic Management - Calcium
• 1-2 grams of elemental calcium daily in divided doses
 – dosing with meals to improve absorption
• calcium citrate preferred for better absorption
 – 200 mg elemental calcium/gram
 – calcium citrate 600 mg
 • 2 tablets QID = 960 mg elemental calcium per day
• calcium carbonate less expensive
 – 400 mg elemental calcium/gram
• supplemental calcium PRN breakthrough symptoms
Hypoparathyroidism Management

Chronic Management - Calcitriol

- activated vitamin D (1,25-dihydroxy D)
- dispensed in 0.25 mcg and 0.5 mcg capsules
- starting dose 0.25 mcg BID
- titrate up to 0.5 mcg BID to QID
- dose with calcium to improve calcium absorption

CAUTION

- risk of hypercalcemia with higher doses
- always check serum calcium within 1 wk of changing dose
Hypoparathyroidism Management

Monitoring Therapy

- monitor serum calcium weekly after changes
- regular assessment of renal function and calcium once stable dosing is established (Q3-6months)
- target calcium: 8.0 to 8.9 mg/dl
- periodic assessment of urine calcium
 - 24 hr urine calcium > 300 mg/day
 - cut dose of calcium & calcitriol
 - consider therapy with HCTZ 25-50 mg QD to decrease urinary calcium
Chronic Management - recombinant human PTH (1-84)
• recently approved for chronic management of hypoparathyroidism
• reduces doses of calcium and calcitriol needed to maintain serum calcium
 – 55% of rhPTH patients cut calcitriol by > 50% (vs. 2.5% PBO)
 – 42% of rhPTH were able to stop calcitriol and were on < 500 mg of calcium (vs. 2.5% PBO)
• Risk Evaluation Mitigation Strategy (REMS)
 – rhPTH increased incidence of osteogenic sarcoma in rat models
 • both genders, dependent on dose and duration
 – risk in humans cannot be excluded
 • use only when benefits exceed risk
 • do not use in patients with higher risk of osteogenic sarcoma
 – Paget’s disease of bone
 – prior exposure radiation therapy to skeleton
 – open epiphyses: pediatric patients or young adults
 – unexplained elevation of alkaline phosphatase
Hypoparathyroidism Management

Chronic Management - recombinant human PTH (1-84)

• Risk Evaluation Mitigation Strategy (REMS)
 – rhPTH increased incidence of osteogenic sarcoma in rat models
 • both genders, dependent on dose and duration
 • genetically predisposed animals
 – risk in humans cannot be excluded
 • use only when benefits exceed risk
 • not for patients well controlled on calcium/calcitriol
 • do not use in patients with higher risk of osteogenic sarcoma
 – Paget’s disease of bone
 – prior exposure radiation therapy to skeleton
 – open epiphyses: pediatric patients or young adults
 – unexplained elevation of alkaline phosphatase
Hypoparathyroidism Management

Chronic Management - recombinant human PTH (1-84)

- starting dose 50 mcg SQ daily
 - cut calcitriol by 50% on initiation
 - weekly monitoring of serum calcium
- adjust dose of calcitriol as first priority
- adjust dose of calcium as second priority
- increase rhPTH (1-84) by 25 mcg QD every 4 weeks to max dose 100 mcg QD

<table>
<thead>
<tr>
<th>Serum calcium</th>
<th>Adjust 1st</th>
<th>Adjust 2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>> ULN</td>
<td>decrease or stop</td>
<td>decrease</td>
</tr>
<tr>
<td>> 9 and < ULN</td>
<td>decrease or stop</td>
<td>no change or stop (if off D)</td>
</tr>
<tr>
<td>8.0 to 9.0 mg/dL</td>
<td>no change</td>
<td>no change</td>
</tr>
<tr>
<td>< 8 mg/dL</td>
<td>increase</td>
<td>increase</td>
</tr>
</tbody>
</table>
Hypoparathyroidism: Summary

- significant quality of life issues
 - large number of tablets/day
 - side-effects with
 - non-compliance
 - exercise
 - changes in routine
- frequent/consistent dosing of calcium and calcitriol is mainstay of therapy
- benefits of rhPTH (1-84) for inadequately controlled patients
 - decrease calcitriol dependence
 - decrease in supplemental calcium dose
- need to remember periodic surveillance of calcium, renal function and urinary calcium