Following this presentation, you will be able to:

• Describe the relationship between major CV risk factors and CVD outcomes

• Select therapeutic modalities available to practitioners to improve CV risk factors

• Recognize the implications of recent large trials on clinical decisions guiding choice and targets for blood pressure and lipid abnormalities

• Discuss other co-morbid/microvascular conditions seen in patients with type 2 diabetes

• Explain the role of pharmacologic intervention in the treatment of type 2 diabetes

ACEi = angiotensin converting enzyme inhibitor; ARB = angiotensin II receptor blocker; CV = cardiovascular; CVD = cardiovascular disease
CVD Risk Factor Modifications Algorithm

Dyslipidemia

Therapeutic Lifestyle Changes (See Obesity Algorithm)

LIPID PANEL: Assess CVD Risk

- **Statin Therapy**
 - If statin-intolerant:
 - Try alternate statin, lower statin dose or frequency, or add nonstatin LDL-C-lowering therapies
 - Repeat lipid panel; assess adequacy, tolerance of therapy
 - If TG > 500 mg/dL, fibrates, omega-3 ethyl esters, niacin

Risk Levels

<table>
<thead>
<tr>
<th>Risk Levels</th>
<th>MODERATE (DM but no other major risk and/or age <40)</th>
<th>HIGH (DM + major CVD risk(s) [HTN, Fam Hx, low HDL-C, smoking] or CVD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C (mg/dL)</td>
<td><100</td>
<td><70</td>
</tr>
<tr>
<td>Non-HDL-C (mg/dL)</td>
<td><120</td>
<td><100</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td><150</td>
<td><150</td>
</tr>
<tr>
<td>TC/HDL-C</td>
<td><3.5</td>
<td><3.0</td>
</tr>
<tr>
<td>Apo B (mg/dL)</td>
<td><90</td>
<td><80</td>
</tr>
<tr>
<td>LDL-P (nmol/L)</td>
<td><1200</td>
<td><1000</td>
</tr>
</tbody>
</table>

- **Desirable Levels**

- **If not at desirable levels:**
 - Intensify TLC (weight loss, physical activity, dietary changes) and glycemic control; Consider additional therapy

- **To lower LDL-C:**
 - Intensify statin, add ezetimibe &/or coleselam &/or niacin
 - To lower Non-HDL-C, TG:
 - Intensify statin &/or add OM3EE &/or fibrates &/or niacin
 - To lower Apo B, LDL-P:
 - Intensify statin &/or ezetimibe &/or coleselam &/or niacin
 - Assess adequacy & tolerance of therapy with focused laboratory evaluations and patient follow-up

* even more intensive therapy might be warranted

Hypertension

Goal: Systolic ~130, Diastolic ~80 mm Hg

- **ACEI or ARB**
 - For initial blood pressure >150/100 mm Hg: Dual therapy
 - Thiazide
 - Calcium Channel Blocker
 - ß-blocker

- If not at goal (2–3 months):
 - Add ß-blocker or calcium channel blocker or thiazide diuretic

- If not at goal (2–3 months):
 - Add next agent from the above group, repeat

- If not at goal (2–3 months):
 - Additional choices (ß-blockers, central agents, vasodilators, spironolactone)

- Achievement of target blood pressure is critical

Copyright © 2013 AACE May not be reproduced in any form without express written permission from AACE.
Vascular Disease Events in Patients with Diabetes (Age 35-64): Framingham Heart Study, 30-year Follow-up

Risk Ratio

(Relative to subjects without diabetes

†P<0.001

*P<0.05)

Age-adjusted annual rate/1,000

Men | Women

CHD

20† | 19†

Stroke

6† | 3*

Intermittent claudication

9† | 9†

Cardiac failure

11† | 10†

Total CVD

38† | 30†

Diabetes is a Vascular Disease

Visceral vs Subcutaneous Adiposity

CT scans matched for BMI and total body fat

Visceral obesity
Fat mass: 19.8 kg
VFA: 155 cm²

Subcutaneous (sc) obesity
Fat mass: 19.8 kg
VFA: 96 cm²

BMI = body mass index; CT = computerized tomography; VFA = visceral fat area

Abdominal Obesity and Increased Risk of Cardiovascular Events: HOPE Study

Adjusted Relative Risk

Waist circumference (in):

- Tertile 1: <37.4
- Tertile 2: 37.4–40.5
- Tertile 3: >40.5

Men:
- CVD death: 1
- MI: 1
- All-cause deaths: 1

Women:
- CVD death: <34.3
- MI: 34.3–38.5
- All-cause deaths: >38.5

*Adjusted for BMI, age, smoking, sex, CVD disease, DM, HDL-cholesterol, total-C

BMI = body mass index; CVD = cardiovascular disease; DM = diabetes mellitus; HDL = high-density lipoprotein cholesterol; MI = myocardial infarction

Metabolic Markers to Identify Overweight Individuals Sufficiently Insulin-resistant To Be at Increased Risk for CV Disease

Sensitivity (true-positive)

Receiver-operating Characteristic (ROC) curve analysis

TG, TG/HDL, & insulin most useful metabolic markers in identifying insulin resistance

Optimal cut-points: TG (≥130 mg/dL), TG/HDL(≥3.0), and Insulin (≥109 pmol/L)

Syndrome X (1988)

Metabolic disturbances commonly cluster in patients with cardiovascular disease, even without diabetes mellitus

- Resistance to insulin-stimulated glucose uptake
- Hyperinsulinemia
- Hypertension
- Glucose intolerance
- Increased VLDL-triglycerides
- Decreased HDL-cholesterol

- Resistance to Insulin-stimulated suppression of adipose tissue lipolysis \rightarrow free fatty acids
- And, while not required, ‘Syndrome X’ was more common in overweight or obese individuals

HDL = high density lipoprotein; VLDL = very low-density lipoprotein

Reaven, GM. Diabetes. 1988;37:1595-1607
NCEP-ATP III 2001 Guidelines: Clinical Identification of the Metabolic Syndrome

≥3 of the following are needed for diagnosis

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Defining Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal obesity</td>
<td>Waist circumference</td>
</tr>
<tr>
<td>- men</td>
<td>>102 cm (>40 in)</td>
</tr>
<tr>
<td>- women</td>
<td>>88 cm (>35 in)</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>150 mg/dL</td>
</tr>
<tr>
<td>HDL</td>
<td></td>
</tr>
<tr>
<td>- men</td>
<td><40 mg/dl</td>
</tr>
<tr>
<td>- women</td>
<td><50 mg/dl</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>130/85 mmHg</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>110 mg/dL → 100 mg/dL</td>
</tr>
</tbody>
</table>

HDL = high density lipoprotein cholesterol; NCEP ATP III = Third Nation Cholesterol Education Program Adult Treatment Panel
Metabolic Syndrome and Risk of Incident Cardiovascular Events and Death: A Systematic Review and Meta-Analysis of Longitudinal Studies

37 eligible studies including 43 cohorts (inception 1971 to 1997; N=172,573), utilizing either the NCEP, WHO, or modified versions

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Studies (N)</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV event</td>
<td>11</td>
<td>2.18</td>
<td>1.63-2.93</td>
</tr>
<tr>
<td>CHD event</td>
<td>18</td>
<td>1.65</td>
<td>1.37-1.99</td>
</tr>
<tr>
<td>CV death</td>
<td>10</td>
<td>1.91</td>
<td>1.47-2.49</td>
</tr>
<tr>
<td>CHD death</td>
<td>7</td>
<td>1.60</td>
<td>1.28-2.01</td>
</tr>
<tr>
<td>Death</td>
<td>12</td>
<td>1.60</td>
<td>1.37-1.92</td>
</tr>
</tbody>
</table>

CHD = coronary heart disease; CI = confidence interval; CV = cardiovascular; NCEP = National Cholesterol Education Program; RR = relative risk; WHO = World Heath Organization

Collaborative Atorvastatin Diabetes Study (CARDS)
Consistent Statin Effects on Primary Endpoint Components

<table>
<thead>
<tr>
<th>Event</th>
<th>Placebo</th>
<th>Atorvastatin</th>
<th>Risk reduction (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td>127 (9.0)</td>
<td>83 (5.8)</td>
<td>37% (17–52) p = 0.001</td>
</tr>
<tr>
<td>Acute coronary events</td>
<td>77 (5.5)</td>
<td>51 (3.6)</td>
<td>36% (9–55)</td>
</tr>
<tr>
<td>Coronary revascularization</td>
<td>34 (2.4)</td>
<td>24 (1.7)</td>
<td>31% (−16–59)</td>
</tr>
<tr>
<td>Stroke</td>
<td>39 (2.8)</td>
<td>21 (1.5)</td>
<td>48% (11–69)</td>
</tr>
</tbody>
</table>

Favors Atorvastatin: Hazard ratio
Favors Placebo: Hazard ratio

Residual Cardiovascular Risk, Even After Treatment With Statins

• Despite high-dose statin therapy, there is high residual risk in patients with diabetes, low HDL, elevated triglycerides, and other risk factors

• Therefore, these other risk factors should be addressed

HDL = high density lipoprotein cholesterol

PROVE-IT TIMI 22, Primary Endpoint

All-cause Death or Major Cardiovascular Events

% with event

Months of follow-up

Pravastatin 40mg (26.3%)

Atorvastatin 80mg (22.4%)

16% RRR (P = 0.005)

Residual Risk

AACE 2013 Dyslipidemia Management Algorithm

When Atherogenic Markers not at goal:

To Lower LDL-C:
- Intensify statin and/or
- add ezetimibe and/or colesevelam and/or niacin

To Lower Non-HDL-C, TG:
- Intensify statin and/or
- Rx-grade omega-3 ethyl esters and/or fibrates and/or niacin

To Lower Apo B, LDL-P:
- Intensify statin and/or
- add ezetimibe and/or colesevelam

Apo B = apolipoprotein B; HDL-C = high density lipoprotein cholesterol; LDL-C = low density lipoprotein cholesterol; TG = triglyceride

Niacin

• Despite high-dose statin therapy, there is high residual risk in patients with diabetes, low HDL, elevated triglycerides, and other risk factors

• Although niacin, or nicotinic acid (vitamin B₃) has been shown to increase HDL cholesterol, the results of recent large clinical trials have shown little cardiovascular protection for patients with diabetes

• Outcomes indicate that while low HDL is associated with poor outcomes, increasing HDL does not appear to be protective for major vascular events.

HDL = high density lipoprotein cholesterol

ADA/ACC Consensus Statement: Treatment Goals

Treatment Goals in Patients with Cardiometabolic Risk and Lipoprotein Abnormalities

<table>
<thead>
<tr>
<th></th>
<th>LDL-C (mg/dL)</th>
<th>Non–HDL-C (mg/dL)</th>
<th>Apo B (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest-risk patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Known CVD or</td>
<td><70</td>
<td><100</td>
<td><80</td>
</tr>
<tr>
<td>– Diabetes plus ≥1 additional major CVD risk factor*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-risk patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– No diabetes or known CVD but ≥2 major CVD risk factors* or</td>
<td><100</td>
<td><130</td>
<td><90</td>
</tr>
<tr>
<td>– Diabetes but no other major CVD risk factors*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Major risk factors beyond dyslipidemia include smoking, hypertension, and family history or premature CHD.

ACC = American College of Cardiology; ADA = American Diabetes Association; Apo B = apolipoprotein B; CHD = coronary heart disease; CVD = cardiovascular disease; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol.

Proprotein convertase
Proprotein convertase
Subtilisin kexitin

• Proprotein convertase family consists of at least 9 endoprotease enzymes
Proprotein convertase subtilisin-kexin 9

- PCSK9 is widely distributed in Liver, Intestine, kidneys and CNS
- Regulates plasma LDL-C levels through increased degradation of LDL receptor proteins
- Overexpression of PCSK9 results in increased circulating levels of LDL-C
- Single point mutations associated with increased proprotein convertase function may result in familial autosomal dominant hyperlipidemia and increased risk of early MI and stroke

New Eng J Med 2011;365:2507-2518
PCSK9 Inhibitors

- Reduce LDL-C levels
- Have been shown to reduce Cardiovascular endpoints

New Eng J Med 2015;372:1489-1499
New Eng J Med 2015;372 1500-1509
PCSK9 inhibitors

| Indications | Adjunct to diet and maximally tolerated statin therapy in adults
| Heterozygous familial hypercholesterolemia
| Clinical atherosclerotic CV disease who require additional lowering of LDL-C |
| Side effects | Injection site reactions
| Myalgias
| Neurocognitive (confusion, impaired memory) |
| Dosage: Alirocumab (Praluent) | 75 mg/2 weeks or 150 mg/2 weeks |
| Evolucumab (Repatha) | 140 mg/2 weeks or 420 mg/month |
ACCORD-LIPID: Primary Outcomes Possible Benefit Confined to the High Triglycerides/Low HDL-C Subgroup

Analysis of fenofibrate benefit in pre-specified high TG/low HDL subgroup vs. all others

CV = cardiovascular; Fen = fenofibrate; HDL-C = high-density lipoprotein cholesterol; Simva = simvastatin; TG = triglyceride
The Framingham Heart Study

Risk of CHD by Triglyceride Level

N = 5127

Relative CHD Risk

CHD = coronary heart disease

Castelli WP. Am J Cardiol. 1992;70:3H-9H.
Algorithm for Managing Severe Hypertriglyceridemia (SH)

Acute management SH +/- pancreatitis
- Dietary measures: NPO; I.V. fluids; Insulin, if diabetes
 - Add Rx-grade Omega-3 fatty acids
 - Add fibrates to OM-3 fatty acids
 - Add niacin to fibrates and OM-3 fatty acids
 - Consider medium chain TG
 - If poorly responsive, apheresis (plasmapheresis) until TG <1000 mg/dL

Chronic management SH
- Dietary measures: Low carbohydrate, low-fat <20 g LC-FA/day, MCT, abstinence from alcohol

If TG not at desirable level

When TGs are lowered to <500 mg/dL, secondary targets become non-HDL-C, LDL-C, LDL-P; begin statin therapy

Antiplatelet Agents in Diabetes: 2013

• **Primary prevention (75-162 mg/day)**
 • Type 1 or type 2 diabetes at increased CV risk (10-year risk >10%)
 • Men >50 years of age or women >60 years with 1+ additional major risk factor
 • Family history of CVD, HTN, smoking, dyslipidemia, or albuminuria
 • Not sufficient evidence to recommend aspirin for primary prevention in lower-risk individuals

• **Secondary prevention (75-162 mg/day)**
 • Use aspirin therapy as a secondary prevention strategy in those with diabetes with a history of CVD

CV = cardiovascular; CVD = cardiovascular disease; HTN = hypertension
Hypertension

Goal:
- Systolic ~130 mmHg
- Diastolic ~80 mmHg

- **ACEi** or **ARB**
 - For initial blood pressure >150/100
 - If not at goal (2-3 months)
 - Add beta-blocker or calcium channel blocker or thiazide diuretic
 - Add next agent from the above group, repeat
 - If not at goal (2-3 months)
 - Additional choices
 - (alpha-blockers, central agents, vasodilators, spironolactone)
 - Achievement of target blood pressure is critical

Guideline Recommendations for Uncomplicated and Complicated Hypertension

<table>
<thead>
<tr>
<th>Type of hypertension</th>
<th>BP goal (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplicated</td>
<td><140/90</td>
</tr>
<tr>
<td>Complicated</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td><130/80</td>
</tr>
<tr>
<td>Kidney disease</td>
<td><130/80*</td>
</tr>
<tr>
<td>Other high risk (stroke, MI)</td>
<td><130/80</td>
</tr>
</tbody>
</table>

*Lower if proteinuria is >1 g/day.
ADVANCE & ACCORD BP Reduction in Context – UKPDS

Incidence of MI and microvascular endpoints by mean systolic BP, adjusted for age, sex, and ethnic group, for white men aged 50-54 years at diagnosis (mean diabetes duration 10 years)

Incidence per 1000 patient-years (%)

Mean systolic BP (mmHg)

Myocardial Infarction

Microvascular Endpoints

BP = blood pressure
MI = myocardial infarction

2024-patient study (340 had diabetes [DM] and 281 survived hospitalization for acute MI); of the 127 patients with diabetes taking β-blockers, 80% received propranolol and 20% received other β-blockers.
Beta-Blocker Recommendations for T2DM

- Recommend the use of beta-blocker in type 2 diabetes patients with heart failure and/or history of myocardial infarction
- Beta-blockers may be used safely in patients using blood pressure control
- Early trials indicated that glucose metabolism may be adversely affected by some beta-blockers; however, newer agents such as bisoprolol and carvedilol have not been shown to have this effect
- Beta-blockers may mask some signs and symptoms of hypoglycemia in patients with longstanding diabetes, particularly patients on insulin

UKPDS “Legacy Effect” of Earlier Glucose Control with Insulin or Sulfonylurea

Total number of patients with clinical outcomes evaluated during 30 years follow-up: 2,729 from intensive treatment group vs 1,138 from conventional treatment group

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Interv.</th>
<th>F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate endpoint</td>
<td>-1997</td>
<td>-2007</td>
</tr>
<tr>
<td>Any diabetes-related endpoint</td>
<td>RRR: 12%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>P: 0.029</td>
<td>0.040</td>
</tr>
<tr>
<td>Microvascular disease</td>
<td>RRR: 25%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>P: 0.0099</td>
<td>0.001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>RRR: 16%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>P: 0.052</td>
<td>0.014</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>RRR: 6%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>P: 0.44</td>
<td>0.007</td>
</tr>
</tbody>
</table>

RRR = Relative Risk Reduction, P = Log Rank

UKPDS: “Legacy Effect” of Earlier Glucose Control with Metformin in Overweight Patients

Total number of patients with clinical outcomes evaluated during 30-years follow-up: 342 from intensive treatment group vs 411 from conventional treatment group

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Interv.</th>
<th>F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate endpoint</td>
<td>-1997</td>
<td>-2007</td>
</tr>
<tr>
<td>Any diabetes-related endpoint</td>
<td>RRR: 32%</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td>P: 0.0023</td>
<td>0.013</td>
</tr>
<tr>
<td>Microvascular disease</td>
<td>RRR: 29%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>P: 0.19</td>
<td>0.31</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>RRR: 39%</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>P: 0.010</td>
<td>0.005</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>RRR: 36%</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>P: 0.011</td>
<td>0.002</td>
</tr>
</tbody>
</table>

RRR = Relative Risk Reduction, P = Log Rank

STENO-2: Total Mortality by Treatment Arm Over Time

Total mortality decreased by 50% with intensive treatment, seen only after >10 years follow-up (mean 13.3 years)

- Intensive vs. Conventional HR:
 - Year 4: 2.0
 - Year 8: 1.0
 - Year 13: 0.54

- End of multifactorial intervention: 46%

HR = hazard ratio

Time-Course of CVD Prevention by Glycemia Control in DM: Summary

• **Microvascular benefits**
 — Accrue early (≤6 years in DCCT, UKPDS, Kumamoto, ADVANCE, STENO-2)

• **Macrovascular benefits:**
 — Are **not** seen in trials of ≤10-years’ treatment (with A1C diff. 0.8%-1.8%; ACCORD, ADVANCE, VADT, DCCT, UKPDS)
 — Were seen in the Kumamoto trial, with A1C diff. 2.3% at 10 years
 — Are seen at ≥10 years, even when glycemic difference lost – so-called “Legacy Effect” (STENO-2, UKPDS-metformin, UKPDS 17-year follow-up)
 — Total mortality was increased at <5 y (STENO-2, ACCORD)
 • But at 13.3 years, total mortality was reduced (STENO-2)

A1C = glycated hemoglobin; CVD = cardiovascular disease; DM = diabetes mellitus; MI = myocardial infarction

Still a long way to go

A1C = glycated hemoglobin; BP = blood pressure; LDL/LDL-C = low density lipoprotein cholesterol

Casagrande SS, Fradkin JE, Saydah SH, Rust KF, Cowie CC. Diabetes Care 2013;36:2271-2279
ABCs of CVD Risk Management (1)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Anti-platelets/anticoagulants</td>
<td>Treat all high-risk patients with one of these</td>
</tr>
<tr>
<td>ACE inhibitors/ARBs</td>
<td>Optimize BP especially if CVD, type 2 diabetes, or low EF present</td>
</tr>
<tr>
<td>Anti-anginals</td>
<td>Relieve anginal symptoms, allow patient to exercise</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>BP control</td>
<td>Aim for BP <130/85 mm Hg, or <130/80 mm Hg for type 2 diabetes</td>
</tr>
<tr>
<td>b-blockers</td>
<td>Post MI or low EF</td>
</tr>
</tbody>
</table>

CVD=cardiovascular disease; ACE=angiotensin converting enzyme; ARB=angiotensin receptor blocker; BP=blood pressure; EF=ejection fraction; MI=myocardial infarction

ABCs of CVD Risk Management (2)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Cholesterol management</td>
<td>➢ LDL-C targets, NCEP ATP III guidelines</td>
</tr>
<tr>
<td></td>
<td>➢ CHD, CHD risk equivalents: <100 mg/dL</td>
</tr>
<tr>
<td></td>
<td>➢ >2 RF: <130 mg/dL</td>
</tr>
<tr>
<td></td>
<td>➢ 0-1 RF: <160 mg/dL</td>
</tr>
<tr>
<td></td>
<td>➢ HDL-C: >40 mg/dL (men)</td>
</tr>
<tr>
<td></td>
<td>➢ >50 mg/dL (women)</td>
</tr>
<tr>
<td>➢ Cigarette-smoking cessation</td>
<td>➢ TG: <150 mg/dL</td>
</tr>
<tr>
<td></td>
<td>➢ Long-term smoking cessation</td>
</tr>
</tbody>
</table>

LDL-C = low density lipoprotein cholesterol; CHD = coronary heart disease; HDL-C = high density lipoprotein cholesterol; RF = risk factor; TG = triglycerides

ABCs of CVD Risk Management (3)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Dietary/weight counseling</td>
<td>➢ Achieve optimal BMI</td>
</tr>
<tr>
<td>Diabetes management</td>
<td>➢ ↓ saturated fats; ↑ fruits, vegetables, fiber</td>
</tr>
<tr>
<td></td>
<td>➢ Achieve A1C <7%</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Exercise</td>
<td>➢ Improve physical fitness (aim for 30 min/days on most days of week)</td>
</tr>
<tr>
<td>Education of patients and families</td>
<td>➢ Optimize awareness of CAD risk factors</td>
</tr>
</tbody>
</table>

BMI=body mass index; A1C=glycated hemoglobin; CAD=coronary artery disease.

Treating the ABCs Reduces Diabetic Complications

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Complication</th>
<th>Reduction of Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose control</td>
<td>▪ Myocardial infarction</td>
<td>↓ 16%¹</td>
</tr>
<tr>
<td></td>
<td>▪ Cardiovascular disease</td>
<td>↓ 51%²</td>
</tr>
<tr>
<td></td>
<td>▪ Heart failure</td>
<td>↓ 56%³</td>
</tr>
<tr>
<td></td>
<td>▪ Stroke</td>
<td>↓ 44%³</td>
</tr>
<tr>
<td></td>
<td>▪ Diabetes-related deaths</td>
<td>↓ 32%³</td>
</tr>
<tr>
<td>Blood pressure control</td>
<td>▪ Coronary heart disease mortality</td>
<td>↓ 35%⁴</td>
</tr>
<tr>
<td></td>
<td>▪ Major coronary heart disease event</td>
<td>↓ 55%⁵</td>
</tr>
<tr>
<td></td>
<td>▪ Any atherosclerotic event</td>
<td>↓ 37%⁵</td>
</tr>
<tr>
<td></td>
<td>▪ Cerebrovascular disease event</td>
<td>↓ 53%⁴</td>
</tr>
</tbody>
</table>

Two-Track Approach to Reduce Risk

Track 1
Lower glucose to prevent microvascular complications and progression to diabetes

- Lifestyle intervention
- Pharmacotherapy in high risk patients

Track 2
Address cardiovascular disease risk factors

- Lifestyle intervention
- Blood pressure goals: <130/80 mm Hg
- LDL goal: <100 mg/dL
Effect of Intensive BP Lowering on Risk of Micro- and Macrovascular Complications: UKPDS

Benefits of 144/82 mm/HG vs 154/87 mm/HG

HDL’s Complexity: Anti-Atherogenic Actions

- Reverse Cholesterol Transport
 - Cellular Cholesterol Efflux
- Anti-infectious
- Anti-inflammatorv
- Anti-oxidative
- Anti-apoptotic
- Vasodilatory
- Endothelial Repair

HDL-C
Apo A-I / II

ADA Recommendations for Aspirin Therapy in Diabetes

• Aspirin 75-162 mg/day recommended as
 – Secondary prevention in patients with diabetes and history of CVD
 – Primary prevention for patients with diabetes and 10-year CVD risk >10%
 • Do not use for primary prevention in patients with lower CVD risk because potential adverse effects (eg, bleeding) are likely to offset potential benefits

• Use clopidogrel 75 mg/day for those with CVD and documented aspirin allergy

• Combination therapy with aspirin and clopidigrel is reasonable for ≤1 year after ACS
Intensive Glycemic Control and Long-term Macrovascular Risk in Younger Patients With Shorter Duration of Disease

DCCT
T1DM, 5-6 years duration
(N=1441)

UKPDS
T2DM, newly diagnosed
(N=4209)

CV, cardiovascular; DCCT, Diabetes Control and Complications Trial; MI, myocardial infarction; UKPDS, United Kingdom Prospective Diabetes Study.

Epidemiologic Relationships Between A1C and All-cause Mortality in the ACCORD Trial

Does A1C achieved predict a risk for all-cause mortality?

Adjusted (Model 3) Relationships

Glucose Control and CHD Events

<table>
<thead>
<tr>
<th>Study</th>
<th>Intensive treatment/standard treatment</th>
<th>Weight of study size</th>
<th>Weight of study size</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKPDS(^4,7)</td>
<td>3071/1549 426/259</td>
<td>8.6%</td>
<td>0.75 (0.54-1.04)</td>
<td></td>
</tr>
<tr>
<td>PROactive(^18-20)</td>
<td>2605/2633 164/202</td>
<td>20.2%</td>
<td>0.81 (0.65-1.00)</td>
<td></td>
</tr>
<tr>
<td>ADVANCE(^5)</td>
<td>5571/5569 310/337</td>
<td>36.5%</td>
<td>0.92 (0.78-1.07)</td>
<td></td>
</tr>
<tr>
<td>VADT(^21,22)</td>
<td>892/899 77/90</td>
<td>9.0%</td>
<td>0.85 (0.62-1.17)</td>
<td></td>
</tr>
<tr>
<td>ACCORD(^8)</td>
<td>5128/5123 205/248</td>
<td>25.7%</td>
<td>0.82 (0.68-0.99)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>17267/15773 1182/1136</td>
<td>100%</td>
<td>0.85 (0.77-0.93)</td>
<td></td>
</tr>
</tbody>
</table>

- Intensive treatment better
- Standard treatment better
DYSLIPIDEMIA

THERAPEUTIC LIFESTYLE CHANGES
(See Obesity Algorithm)

If not at desirable levels:
Intensify TLC (weight loss, physical activity, dietary changes) and glycemic control; Consider additional therapy

To lower LDL-C:
To lower Non-HDL-C, TG:
To lower Apo B, LDL-P:
Intensify statin, add ezetimibe &/or colesevelam &/or niacin
Intensify statin &/or add OM3EE &/or fibrates &/or niacin
Intensify statin &/or ezetimibe &/or colesevelam &/or niacin

Assess adequacy & tolerance of therapy with focused laboratory evaluations and patient follow-up
Benefits of Aggressive LDL-C Lowering in Diabetes (and Residual Risk)

<table>
<thead>
<tr>
<th>Study</th>
<th>Primary Event Rate, %</th>
<th>Aggressive Lipid-lowering</th>
<th>Aggressive Lipid-lowering</th>
<th>Difference in LDL-C, mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment</td>
<td>Control</td>
<td>Better</td>
<td>Worse</td>
</tr>
<tr>
<td>TNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes, CHD</td>
<td>13.8</td>
<td>17.9</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>ASCOT-LLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes, HTN</td>
<td>9.2</td>
<td>11.9</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>CARDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes, no CVD</td>
<td>5.8</td>
<td>9.0</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>HPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All diabetes</td>
<td>9.4</td>
<td>12.6</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Diabetes, no CVD</td>
<td>9.3</td>
<td>13.5</td>
<td>0.67</td>
<td></td>
</tr>
</tbody>
</table>

*Atorvastatin 10 vs 80 mg/day
†Statin vs placebo
Summary

• Major CV risk factors and CVD outcomes
• Therapeutic modalities available to clinicians to improve CV risk factors
• Implications of recent large trials on clinical decisions guiding choice and targets for blood pressure and lipid abnormalities
• Additional co-morbid/microvascular conditions seen in patients with T2DM
• Role of pharmacologic intervention in the treatment of type 2 diabetes